AI Article Synopsis

Article Abstract

Ca(2+) dynamics underlying cardiac excitation-contraction coupling are essential for heart functions. In this study, we constructed microstructure-based models of Ca(2+) dynamics to simulate Ca(2+) influx through individual L-type Calcium channels (LCCs), an effective Ca(2+) diffusion within the cytoplasmic space and in the dyadic space, and the experimentally observed calcium-dependent inactivation (CDI) of the LCCs induced by local and global Ca(2+) sensing. The models consisted of LCCs with distal and proximal Ca(2+) (Calmodulin-Ca(2+) complex) binding sites. In one model, the intra-cellular space was organelle-free cytoplasmic space, and the other was with a dyadic space including sarcoplasmic reticulum membrane. The Ca(2+) dynamics and CDI of the LCCs in the model with and without the dyadic space were then simulated using the Monte Carlo method. We first showed that an appropriate set of parameter values of the models with effectively extra-slow Ca(2+) diffusion enabled the models to reproduce major features of the CDI process induced by the local and global sensing of Ca(2+) near LCCs as measured with single and two spatially separated LCCs by Imredy and Yue (Neuron. 1992;9:197-207). The effective slow Ca(2+) diffusion might be due to association and dissociation of Ca(2+) and Calmodulin (CaM). We then examined how the local and global CDIs were affected by the presence of the dyadic space. The results suggested that in microstructure modeling of Ca(2+) dynamics in cardiac myocytes, the effective Ca(2+) diffusion under CaM-Ca(2+) interaction, the nanodomain structure of LCCs for detailed CDI, and the geometry of subcellular space for modeling dyadic space should be considered.

Download full-text PDF

Source
http://dx.doi.org/10.2170/physiolsci.RP013208DOI Listing

Publication Analysis

Top Keywords

ca2+ dynamics
20
dyadic space
20
ca2+ diffusion
16
ca2+
14
local global
12
space
9
monte carlo
8
effective ca2+
8
cytoplasmic space
8
space dyadic
8

Similar Publications

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

Molecular foundations for shear-induced dynamics of natural organic matter.

Sci Total Environ

January 2025

Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States. Electronic address:

The overall objective of the present work was to quantify how shear, coupled with varying salt concentration, affected the particle size distribution and relaxation/aggregation behavior for various organic sources of nonliving natural organic matter (NNOM) in surface water. NNOM has been implicated as a conditioning agent leading to the formation of biofilms such as algae. NNOM is also a responsible in surface waters for facilitated transport of a variety of anthropogenic pollutants.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease.

Physiol Rev

January 2025

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.

The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.

View Article and Find Full Text PDF

Polydopamine-assisted ion-mediated hyaluronic acid grafting for effective construction of hemocompatible platform with cancer cell recognition.

Int J Biol Macromol

January 2025

MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China. Electronic address:

Surfaces capable of specific biomolecule recognition are essential for cancer theranostics, biosensing, and tissue engineering. However, current grafting methods, critical for dictating the recognition efficiency and biocompatibility of biomaterials, especially hydrophilic polymers, struggle to balance high grafting density with ease of implementation. In pursuit of a simple, effective, and versatile solution, we introduced a polydopamine (PDA)-assisted Ca-mediated grafting strategy using hyaluronic acid (HA) as a model material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!