Impaired cerebral autoregulation in obstructive sleep apnea.

J Appl Physiol (1985)

Yale Center for Sleep Medicine, Department of Medicine, Yale University School of Medicine New Haven, Connecticut, USA.

Published: December 2008

Obstructive sleep apnea (OSA) increases the risk of stroke independent of known vascular and metabolic risk factors. Although patients with OSA have higher prevalence of hypertension and evidence of hypercoagulability, the mechanism of this increased risk is unknown. Obstructive apnea events are associated with surges in blood pressure, hypercapnia, and fluctuations in cerebral blood flow. These perturbations can adversely affect the cerebral circulation. We hypothesized that patients with OSA have impaired cerebral autoregulation, which may contribute to the increased risk of cerebral ischemia and stroke. We examined cerebral autoregulation in patients with and without OSA by measuring cerebral artery blood flow velocity (CBFV) by using transcranial Doppler ultrasound and arterial blood pressure using finger pulse photoplethysmography during orthostatic hypotension and recovery as well as during 5% CO(2) inhalation. Cerebral vascular conductance and reactivity were determined. Forty-eight subjects, 26 controls (age 41.0+/-2.3 yr) and 22 OSA (age 46.8+/-2.3 yr) free of cerebrovascular and active coronary artery disease participated in this study. OSA patients had a mean apnea-hypopnea index of 78.4+/-7.1 vs. 1.8+/-0.3 events/h in controls. The oxygen saturation during sleep was significantly lower in the OSA group (78+/-2%) vs. 91+/-1% in controls. The dynamic vascular analysis showed mean CBFV was significantly lower in OSA patients compared with controls (48+/-3 vs. 55+/-2 cm/s; P <0.05, respectively). The OSA group had a lower rate of recovery of cerebrovascular conductance for a given drop in blood pressure compared with controls (0.06+/-0.02 vs. 0.20+/-0.06 cm.s(-2).mmHg(-1); P <0.05). There was no difference in cerebrovascular vasodilatation in response to CO(2). The findings showed that patients with OSA have decreased CBFV at baseline and delayed cerebrovascular compensatory response to changes in blood pressure but not to CO(2). These perturbations may increase the risk of cerebral ischemia during obstructive apnea.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.90900.2008DOI Listing

Publication Analysis

Top Keywords

cerebral autoregulation
12
patients osa
12
impaired cerebral
8
obstructive sleep
8
sleep apnea
8
osa
8
increased risk
8
blood pressure
8
blood flow
8
osa patients
8

Similar Publications

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

regulates melanocortin 4 receptor transcription and energy homeostasis.

Sci Transl Med

January 2025

Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX, 75390, USA.

Disruption of hypothalamic melanocortin 4 receptors (MC4Rs) causes obesity in mice and humans. Here, we investigated the transcriptional regulation of in the hypothalamus. In mice, we show that the homeodomain transcription factor Orthopedia (OTP) is enriched in MC4R neurons in the paraventricular nucleus (PVN) of the hypothalamus and directly regulates transcription.

View Article and Find Full Text PDF

Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees.

Heliyon

January 2025

Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary.

The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion injury (CIRI) is clinically characterized by high rates of morbidity, disability, mortality, and recurrence as well as high economic burden. The clinical manifestations of CIRI are often accompanied by gastrointestinal symptoms such as intestinal bacterial dysbiosis and gastrointestinal bleeding. Gut microbiota plays an important role in the pathogenesis of CIRI, and its potential biological effects have received extensive attention.

View Article and Find Full Text PDF

Neuroimmune axis: Linking environmental factors to pancreatic β-cell dysfunction in Diabetes.

Brain Behav Immun Health

February 2025

Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Argentina.

Pancreatic β-cells are specialized in secreting insulin in response to circulating nutrients, mainly glucose. Diabetes is one of the most prevalent endocrine-metabolic diseases characterized by an imbalance in glucose homeostasis, which result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and peripheral insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Pancreatic β-cell dysfunction and islet inflammation are common characteristics of both types of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!