Glucose 1,6-bisphosphate (Glc-1,6-P(2)) concentration in brain is much higher than what is required for the functioning of phosphoglucomutase, suggesting that this compound has a role other than as a cofactor of phosphomutases. In cell-free systems, Glc-1,6-P(2) is formed from 1,3-bisphosphoglycerate and Glc-6-P by two related enzymes: PGM2L1 (phosphoglucomutase 2-like 1) and, to a lesser extent, PGM2 (phosphoglucomutase 2). It is hydrolyzed by the IMP-stimulated brain Glc-1,6-bisphosphatase of still unknown identity. Our aim was to test whether Glc-1,6-bisphosphatase corresponds to the phosphomannomutase PMM1, an enzyme of mysterious physiological function sharing several properties with Glc-1,6-bisphosphatase. We show that IMP, but not other nucleotides, stimulated by >100-fold (K(a) approximately 20 mum) the intrinsic Glc-1,6-bisphosphatase activity of recombinant PMM1 while inhibiting its phosphoglucomutase activity. No such effects were observed with PMM2, an enzyme paralogous to PMM1 that physiologically acts as a phosphomannomutase in mammals. Transfection of HEK293T cells with PGM2L1, but not the related enzyme PGM2, caused an approximately 20-fold increase in the concentration of Glc-1,6-P(2). Transfection with PMM1 caused a profound decrease (>5-fold) in Glc-1,6-P(2) in cells that were or were not cotransfected with PGM2L1. Furthermore, the concentration of Glc-1,6-P(2) in wild-type mouse brain decreased with time after ischemia, whereas it did not change in PMM1-deficient mouse brain. Taken together, these data show that PMM1 corresponds to the IMP-stimulated Glc-1,6-bisphosphatase and that this enzyme is responsible for the degradation of Glc-1,6-P(2) in brain. In addition, the role of PGM2L1 as the enzyme responsible for the synthesis of the elevated concentrations of Glc-1,6-P(2) in brain is established.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662221 | PMC |
http://dx.doi.org/10.1074/jbc.M805224200 | DOI Listing |
Curr Issues Mol Biol
June 2023
Personalized Genomics Laboratory, Texas Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA.
The high morbidity and mortality rate of pulmonary arterial hypertension (PAH) is partially explained by metabolic deregulation. The present study complements our previous publication in "Genes" by identifying significant increases of the glucose transporter solute carrier family 2 (Slc2a1), beta nerve growth factor (Ngf), and nuclear factor erythroid-derived 2-like 2 (Nfe2l2) in three standard PAH rat models. PAH was induced by subjecting the animals to hypoxia (HO), or by injecting with monocrotaline in either normal (CM) or hypoxic (HM) atmospheric conditions.
View Article and Find Full Text PDFCarbohydr Polym
October 2022
Center for Biotechnology and Bioengineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China. Electronic address:
In this study, we explored a novel approach to enhancing the production and bioactivities of Ganoderma exopolysaccharides. The homologous phosphomannomutase gene (PMM1) was cloned and overexpressed in Ganoderma for the first time. As a result, the maximum production of exopolysaccharides by the PMM1 transformant was 1.
View Article and Find Full Text PDFBMC Genomics
December 2019
CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.
Background: Alginate is an important cell wall component and mannitol is a soluble storage carbon substance in the brown seaweed Saccharina japonica. Their contents vary with kelp developmental periods and harvesting time. Alginate and mannitol regulatory networks and molecular mechanisms are largely unknown.
View Article and Find Full Text PDFBiochemistry
June 2018
Department of Chemistry , Boston University, Boston , Massachusetts 02215 , United States.
The human phosphomannomutases PMM1 and PMM2 catalyze the interconversion of hexose 6-phosphates and hexose 1-phosphates. The two isoforms share 66% sequence identity and have kinetic properties similar to those of mutases in vitro but differ in their functional roles in vivo. Though the physiological role of PMM2 is catalysis of the mutase reaction that provides the mannose 1-phosphate (Man-1-P) essential for protein glycosylation, PMM1 is thought to provide a phosphohydrolase activity in the presence of inosine monophosphate (IMP), converting glucose 1,6-bisphosphate (Glu-1,6-P) to glucose 6-phosphate (Glu-6-P), rescuing glycolysis during brain ischemia.
View Article and Find Full Text PDFPurpose: The present study examines the structure and covariance of endogenous variation in gene expression across the recently expanded family of C57BL/6J (B) X DBA/2J (D) Recombinant Inbred (BXD RI) strains of mice. This work is accompanied by a highly interactive database that can be used to generate and test specific hypotheses. For example, we define the genetic network regulating growth associated protein 43 (Gap43) and phosphatase tensin homolog (Pten).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!