Primary cicatricial alopecias (PCA) represent uncommon inflammatory disorders that result in permanent loss of scalp hair. Cutaneous autoimmunity, most prominently chronic cutaneous lupus erythematosus (CCLE), can result in this kind of scarring hair loss. The cosmetic disfigurement caused by PCA and the very unsatisfactory therapeutic options available to date all demand a better understanding of the obscure pathobiology of PCA so as to define new therapeutic targets and strategies. Hair follicle (HF) cycling and regeneration are abolished in PCA due to irreversible, epithelial hair follicle stem cell (eHFSC) damage, triggered by major, yet unclear pro-inflammatory events (e.g. type I interferon-associated cytotoxic inflammation, loss of HF immune privilege, loss of immunosuppressive "no danger" signals). Therefore, immuno-protection of eHFSC and restitution of their immune privilege are attractive future therapeutic strategies in PCA. Chronic cutaneous lupus erythematosus-associated PCA may serve as a model system for other diseases where epithelial stem cells undergo immuno-destruction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autrev.2008.09.003DOI Listing

Publication Analysis

Top Keywords

hair loss
8
cutaneous autoimmunity
8
primary cicatricial
8
chronic cutaneous
8
cutaneous lupus
8
hair follicle
8
immune privilege
8
pca
6
hair
5
loss result
4

Similar Publications

Epidemiological insights into chronic urticaria, vitiligo, alopecia areata, and herpes zoster following COVID-19 infection: A nationwide population-based study.

J Dermatol

December 2024

Department of Ophthalmology, Otolaryngology, and Dermatology, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea.

The long-term complications of coronavirus disease 2019 (COVID-19) continue to cause global concern. This study aimed to estimate the incidence and risk of chronic urticaria, vitiligo, alopecia areata, and herpes zoster following COVID-19 infection. Only participants confirmed by real-time reverse transcription-polymerase chain reaction tests to have COVID-19 were enrolled in the COVID-19 group.

View Article and Find Full Text PDF

Background: Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

Methods: We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping.

View Article and Find Full Text PDF

Clinical differentiation of cutaneous and subcutaneous mast cell tumors in dogs: A pilot study.

Open Vet J

November 2024

Division of Animal Medical Research, Hassen-kai, 2-27 Onozaki, Saito, Miyazaki 881-0012, Japan.

Background: Canine mast cell tumors (MCT) in the skin are classified into cutaneous MCT (cMCT) and subcutaneous MCT (scMCT) types, which exhibit different clinical behaviors. Although these types have been classified only by histology, preoperative differentiation is important for proper surgical planning.

Aim: To examine the accuracy of differentiating these types based on the gross features before surgery.

View Article and Find Full Text PDF

Hair follicle cells reside within a complex extracellular matrix (ECM) environment in vivo, where physical and chemical cues regulate their behavior. The ECM is crucial for hair follicle development and regeneration, particularly through epithelial-mesenchymal interactions. Current in vitro models often fail to replicate this complexity, leading to inconsistencies in evaluating hair loss treatments.

View Article and Find Full Text PDF

Resveratrol-Loaded Versatile Nanovesicle for Alopecia Therapy via Comprehensive Strategies.

Int J Nanomedicine

December 2024

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China.

Introduction: Alopecia is a systemic disease with multiple contributing factors. Effective treatment is challenging when only hair growth mechanisms are targeted while ignoring the role of maintaining hair follicle microenvironment homeostasis, which is crucial for cell growth and angiogenesis. Oxidative stress and inflammation are major disruptors of this microenvironment, leading to inhibited cell proliferation and compromised hair follicle circulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!