Large, multidomain RNA molecules are generally thought to fold following multiple pathways down rugged landscapes populated with intermediates and traps. A challenge to understanding RNA folding reactions is the complex relationships that exist between the structure of the RNA and its folding landscape. The identification of intermediate species that populate folding landscapes and characterization of elements of their structures are the key components to solving the RNA folding problem. This review explores recent studies that characterize the dominant pathways by which RNA folds, structural and dynamic features of intermediates that populate the folding landscape, and the energy barriers that separate the distinct steps of the folding process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739931 | PMC |
http://dx.doi.org/10.1016/j.cbpa.2008.09.017 | DOI Listing |
Methods Enzymol
January 2025
Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel. Electronic address:
Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states.
View Article and Find Full Text PDFBackground: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.
View Article and Find Full Text PDFDue to the hierarchical organization of RNA structures and their pivotal roles in fulfilling RNA functions, the formation of RNA secondary structure critically influences many biological processes and has thus been a crucial research topic. This review sets out to explore the computational prediction of RNA secondary structure and its connections to RNA modifications, which have emerged as an active domain in recent years. We first examine the progression of RNA secondary structure prediction methodology, focusing on a set of representative works categorized into thermodynamic, comparative, machine learning, and hybrid approaches.
View Article and Find Full Text PDFSmall
January 2025
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!