N-[2-(Dimethylamino)ethyl]-2,6-dimethyl-1-oxo-1,2-dihydrobenzo[b]-1,6-naphthyridine-4-carboxamide (SN 28049) is a potent topoisomerase II poison being developed to treat solid tumours. A reliable and sensitive LC-MS method has been developed and validated for the determination of SN 28049 in plasma using a structurally similar internal standard. This method had acceptable intra- and inter-assay accuracy (95-105%) and precision (R.S.D.<6.5%) over the range 0.062-2.5 microM (using a 100 microl sample), and had a lower limit of quantitation of 0.062 microM. Both aqueous and plasma solutions of SN 28049 were stable during short-term (24h at room temperature or 4 degrees C) and long-term storage (8 months at -80 degrees C), and following freezing and thawing (three cycles). The method was applied to study the pharmacokinetics of SN 28049 in mice after iv administration (8.9 mg/kg; n=3 mice per time point). The maximum plasma concentration achieved was 1.22+/-0.05 microM, and concentrations were measurable up to 12h post-administration. A bi-exponential concentration-time curve was observed with an elimination half-life of 2.3+/-0.2h (mean+/-S.E.), a volume of distribution of 34.5+/-2.2l/kg, and a plasma clearance of 12+/-0.5l/h/kg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2008.09.023DOI Listing

Publication Analysis

Top Keywords

n-[2-dimethylaminoethyl]-26-dimethyl-1-oxo-12-dihydrobenzo[b]-16-naphthyridine-4-carboxamide 28049
8
development validation
4
validation liquid
4
liquid chromatography-mass
4
chromatography-mass spectrometry
4
spectrometry lc-ms
4
lc-ms assay
4
assay determination
4
determination anti-cancer
4
anti-cancer agent
4

Similar Publications

Impact of gold nanoparticle size and coating on radiosensitization and generation of reactive oxygen species in cancer therapy.

Nanoscale Adv

January 2025

Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid Pl. de las Ciencias, 1, Moncloa-Aravaca Madrid Spain

Radiation therapy is a common cancer treatment but often damages surrounding healthy tissues, leading to unwanted side effects. Despite technological advancements aimed at improving targeting, minimizing exposure to normal cells remains a major challenge. High-Z nanoparticles, such as gold nanoparticles (AuNPs), are being explored as nano-radiosensitizers to enhance cancer treatment through physical, biological, and chemical mechanisms.

View Article and Find Full Text PDF

Unusual high fluorescence of a 7,7'-diazaisoindigo derivative: A photophysical study.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. Electronic address:

7,7'-Diazaisoindigos are π-conjugated compounds but with poor luminescence properties. Their poor luminescence is generally attributed to the twisting around the central C-C bond in the excited state which favors non-radiative decay. We have found an unusual high fluorescence quantum yield (Φ ≈ 15 %) in a N,N‑Octyl-7,7'-diazaisoindigo derivative incorporating two triphenylamine (TPA) subunits at 5,5'-positions (called compound 12).

View Article and Find Full Text PDF

The connection between gut microbiota and factors like diet is crucial for maintaining intestinal balance, which in turn impacts the host's overall health. microalgae is a sustainable source of bioactive compounds, mainly known for its used in aquaculture and extraction of bioactive lipids, with potential health benefits whose effects on human gut microbiota are still unknown. Therefore, the goal of this work was to assess the impact of on human gut microbiota composition and derived metabolites by combining the INFOGEST protocol and in vitro colonic fermentation process to evaluate potential effects on human gut microbiota conformation through 16S rRNA gene sequencing and its metabolic functionality.

View Article and Find Full Text PDF

Deciphering the Energy Transfer Mechanism Across Metal Halide Perovskite-Phthalocyanine Interfaces.

Adv Sci (Weinh)

January 2025

Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.

Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.

View Article and Find Full Text PDF

All-carbon supramolecular complexation of a bilayer molecular nanographene with [60] and [70]fullerenes.

Org Chem Front

December 2024

Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Av. Complutense S/N 28040 Madrid Spain

Supramolecular chemistry of carbon-based materials provides a variety of chemical structures with potential applications in materials science and biomedicine. Here, we explore the supramolecular complexation of fullerenes C and C, highlighting the ability of molecular nanographene tweezers to capture these structures. The binding constant for the CNG-1⊃C complex was significantly higher than for CNG-1⊃C, showing a clear selectivity for the more π-extended C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!