We report systematic structural studies of poly(l-lactide) (PLLA) employing matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and solid-state NMR spectroscopy. (13)C cross polarization magic angle spinning (CP/MAS) NMR data for 1,8-dihydroxy-9-anthracenone (DT), 2,5-dihydroxybenzoic acid (DHB), 2-(4-hydroxyphenylazo)-benzoic acid (HABA), and trans-3-indoleacrylic acid (IAA), four matrices commonly used in MALDI-TOF analysis of polymers, were analyzed to test the influence of crystallization conditions (solvent, inorganic salt) on sample morphology. (13)C principal elements of chemical shift tensor (CST) and line-shape analyses were employed to study of the nature of hydrogen bonding and to evaluate the crystallinity and amorphicity of the pure polymer. NMR parameters for PLLA were compared with data for polylactide crystallized with the four matrices under different conditions with the addition of two inorganic salts as cationization agents. This study revealed that the semicrystalline structure of the polymer does not change when it is embedded in the matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jasms.2008.09.013DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
8
nmr spectroscopy
8
maldi-tof analysis
8
spectroscopy tool
4
tool supporting
4
supporting optimization
4
optimization maldi-tof
4
analysis polylactides
4
polylactides report
4
report systematic
4

Similar Publications

The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.

View Article and Find Full Text PDF

Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.

View Article and Find Full Text PDF

Wood modification using low molecular weight thermosetting resins improves the biological durability and dimensional stability of wood while avoiding increasingly regulated biocides. During the modification process, resin monomers diffuse from the cell lumen to the cell wall, occupying micropore spaces before curing at 150 °C. This study investigated the mechanism of cell wall diffusion at multiple scales, comparing two test groups where diffusion was either facilitated or restricted.

View Article and Find Full Text PDF

Efficient continuous SF/N separation using low-cost and robust metal-organic frameworks composites.

Nat Commun

January 2025

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF from N. Record-high selectivities (> 2×10) and SF dynamic capacities (~ 2.

View Article and Find Full Text PDF

Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores.

Talanta

January 2025

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:

Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!