The beta-propeller domain is a widespread protein organizational motif. Typically, beta-propeller proteins are encoded by repeated sequences where each repeat unit corresponds to a twisted beta-sheet structural motif; these beta-sheets are arranged in a circle around a central axis to generate the beta-propeller structure. Two superfamilies of beta-propeller proteins, the WD-repeat and Kelch-repeat families, exhibit similarities not only in structure, but, remarkably, also in the types of molecular functions they perform. While it is unlikely that WD and Kelch repeats evolved from a common ancestor, their evolution into diverse families of similar function may reflect the evolutionary advantages of the stable core beta-propeller fold. In this chapter, we examine the relationships between these two widespread protein families, emphasizing recently published work relating to the structure and function of both Kelch and WD-repeat proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-0-387-09595-0_2 | DOI Listing |
J Vis Exp
December 2024
Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center; Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center;
The CUT&RUN technique facilitates detection of protein-DNA interactions across the genome. Typical applications of CUT&RUN include profiling changes in histone tail modifications or mapping transcription factor chromatin occupancy. Widespread adoption of CUT&RUN is driven, in part, by technical advantages over conventional ChIP-seq that include lower cell input requirements, lower sequencing depth requirements, and increased sensitivity with reduced background signal due to a lack of cross-linking agents that otherwise mask antibody epitopes.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK.
Upstream open reading frames (uORFs) are -regulatory motifs that are predicted to occur in the 5' UTRs of the majority of human protein-coding transcripts and are typically associated with translational repression of the downstream primary open reading frame (pORF). Interference with uORF activity provides a potential mechanism for targeted upregulation of the expression of specific transcripts. It was previously reported that steric block antisense oligonucleotides (ASOs) can bind to and mask uORF start codons to inhibit translation initiation, and thereby disrupt uORF-mediated gene regulation.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia.
The global food system is plagued by legitimacy and stability issues due to climate and ecosystem disruptions, contributing to widespread malnutrition. A significant portion of the global population experiences undernourishment, overweight, and micronutrient deficiencies from unhealthy diets. Addressing these challenges necessitates regular consumption of essential nutrients from plant sources.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Physics Department, University of Trento, Via Sommarive, 14, I-38123 Trento, Italy.
Allosteric regulation is a widespread strategy employed by several proteins to transduce chemical signals and perform biological functions. Metal sensor proteins are exemplary in this respect, e.g.
View Article and Find Full Text PDFFEBS J
January 2025
Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China.
The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!