A versatile potentiometer that works with electrode arrays in flow injection and/or monosegmented flow systems is described. The potentiometer is controlled by a microcomputer that allows individual, sequential multiplexed or random accesses to eight electrodes while employing only one reference electrode. The instrument was demonstrated by monitoring an array of seven flow-through ion-selective electrodes for Ag+ and for three electrodes for Cl(-), Ca2+ and K+. The figures of merit of the individual and multiplexed (summed) readings of the electrode array were compared. The absolute standard deviation of the measurements made by summing the potential of two or more electrodes was maintained constant, thus improving the precision of the measurements. This result shows that an attempt to combine the signals of the electrodes to produce a more intense signal in the Hadamard strategy is feasible and accompanied by a proportional improvement in the precision of individual measurements. The preliminary tests suggest that the system can allow for 270 determinations per hour, with a linear range from 1.0 x 10(-2) to 1.0 x 10(-4) mol l(-1) for the three different analytes. Detection limits were estimated as 3.1 x 10(-5), 3.0 x 10(-6) and 1.0 x 10(-5) mol l(-1) for Cl(-), Ca2+ and K+, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562961PMC
http://dx.doi.org/10.1155/S1463924602000147DOI Listing

Publication Analysis

Top Keywords

electrode array
8
cl- ca2+
8
mol l-1
8
electrodes
5
design development
4
development multichannel
4
multichannel potentiometer
4
potentiometer monitoring
4
electrode
4
monitoring electrode
4

Similar Publications

Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.

View Article and Find Full Text PDF

g-CN modified flower-like CuCoO array on nickel foam without binder for high-performance supercapacitors.

RSC Adv

January 2025

School of Physics and Electronic Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan 030006 China

This study investigates the impact of integrating g-CN into CuCoO electrodes on electrochemical performance working as binder-free electrodes. Flower-like CuCoO nanostructures on nickel foam are decorated with few-layer g-CN using a secondary hydrothermal process. The hierarchical g-CN/CuCoO nanoflower electrode demonstrates a specific capacity of 247.

View Article and Find Full Text PDF

Microelectrode array (MEA) techniques provide a powerful method for exploration of neural network dynamics. A critical challenge is to interface 3D neural tissues including neural organoids with the flat MEAs surface, as it is essential to place neurons near to the electrodes for recording weak extracellular signals of neurons. To enhance performance of MEAs, most research have focused on improving their surface treatment, while little attention has been given to improve the tissue-MEA interactions from the medium side.

View Article and Find Full Text PDF

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!