Three strains of anaerobic thermophilic bacteria capable of growing on agarose as a source of energy and carbon were isolated from hot springs near Lake Baikal (Barguzin National Park) and the caldera Uzon (Kamchatka). Cells of all the three strains were spore bacilli with peritrichous flagellation. These isolates grew at a temperature of 55-60 degrees C and pH 6.5-7.0 and fermented a wide range of organic substrates. Analysis of the 16S rRNA sequences allowed us to ascribe the strains B5 and K14 to the genus Thermoanaerobacter and the strain K67 to the genus Caldoanaerobacter. According to the results of DNA-DNA hybridization, B5 was determined as belonging to the species Thermoanaerobacter wiegelii. Agarase was isolated by preparative PAGE and subsequent gel chromatography from the culture liquid of strain B5 grown on the medium containing 0.5% agarose and 0.3% galactose. The molecular weight of this enzyme amounted to 67 kDa and pI, to 4.2. The T. wiegelii B5 agarase was active in the pH range of 3.5 to 7.0 (optimum, 5.2) and temperature range of 50 to 80 degrees C (optimum, 70 degrees C). The preincubation of this enzyme at 90 degrees C for 60 min did not reduce the agarase activity. This activity increased in the presence of metal ions; the maximal effect was observed in the presence of 5 mM Mg2+ and 25 mM Co2+.

Download full-text PDF

Source

Publication Analysis

Top Keywords

thermophilic bacteria
8
three strains
8
wiegelii agarase
8
[the thermophilic
4
bacteria hydrolyzing
4
hydrolyzing agar
4
agar characterization
4
characterization thermostable
4
thermostable agarase]
4
agarase] three
4

Similar Publications

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched.

View Article and Find Full Text PDF

CRISPR-Cas-mediated adaptation of Thermus thermophilus HB8 to environmental stress conditions.

Arch Microbiol

January 2025

Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden.

Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.

View Article and Find Full Text PDF

Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families.

View Article and Find Full Text PDF

Background: The present study investigated the antioxidant, antimicrobial, and partial enzymatic properties of 52 thermophilic cyanobacteria isolates .

Materials And Methods: The DPPH scavenging method was applied to test the antioxidant potential of isolates' methanol extracts. Agar block diffusion and agar well diffusion methods were used to evaluate the antimicrobial activity and measured in milimeters.

View Article and Find Full Text PDF

Assessment of temperature dynamics during methane oxidation in a pilot scale compost biofilter.

Bioresour Technol

January 2025

Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510 Ciudad de México, México. Electronic address:

Biological methane oxidation can sustain high temperatures in organic matrices, such as landfill covers and compost biofilters. This study investigates the temperature dynamics, methane removal efficiency, and microbial community responses in a pilot scale compost biofilter under three methane concentrations (2, 4, and 8 % v v in air) with a 23-minute empty bed residence time. Complete methane removal was achieved at 2 %, with compost bed temperatures reaching 51 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!