[Kidney damage in multiple myeloma and other monoclonal gammopathies].

Vnitr Lek

Interní hematoonkologická klinika Lékarské fakulty MU a FN Brno.

Published: September 2008

Multiple myeloma typically damages the skeleton in the form of osteolytic lesions or diffuse osteoporosis and causes a decrease in blood production. Renal insufficiency is diagnosed immediately at the onset of illness when establishing diagnosis in up to 20% of patients. Where patients suffer from an advanced form of the illness, it occurs in up to 40%. The predominant cause of damage to the kidneys is the monoclonal light chains. Most frequently, nephropathy is caused by the precipitation of light chains with the Tamm-Horsfall protein in the distal part of the loop of Henle and subsequent tubular ruptures and the creation of fibrous changes in the interstitium. Less frequently, there is clinically serious damage to tubular functions without indication of renal insufficiency. In some patients monoclonal immunoglobulin induces changes in the glomeruli. A rare type of damage is deposits of light chains in the form of AL-amyloid and subsequent nephritic syndrome. A very rare form is the deposition of monoclonal immunoglobulin in the form of amorphous matter (light-chain deposition disease) or in the form of crystals within tissue histiocytes (crystal storing histiocytosis). Both of these disorders cause renal insufficiency and less frequently nephritic syndrome such as AL amyloidosis. With timely and intensive treatment of multiple myeloma, which quickly suppresses the creation of light chains, a significant proportion of patients experience reparative changes and improved kidney function. The benefit of plasmapheresis for patients with severe kidney damage has not been confirmed by randomised studies. At the present time the first positive results are becoming available from tests of the use of pre-emptive haemodialysis with special columns that are permeable for light chains. The aim of the text is to provide information on the various forms of nephropathy whose closer analysis can reveal multiple myeloma and contribute to the timely diagnosis of the cause of the nephropathy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

light chains
20
multiple myeloma
16
renal insufficiency
12
monoclonal immunoglobulin
8
nephritic syndrome
8
form
6
patients
5
light
5
chains
5
[kidney damage
4

Similar Publications

Introduction: Young-onset neurocognitive symptoms result from a heterogeneous group of neurological and psychiatric disorders which present a diagnostic challenge. To identify such factors, we analysed the Biomarkers in Younger-Onset Neurocognitive Disorders cohort, a study of individuals <65 years old presenting with neurocognitive symptoms for a diagnosis and who have undergone cognitive and biomarker analyses.

Methods: Sixty-five participants (median age at assessment of 56 years, 45% female) were recruited during their index presentation to the Royal Melbourne Hospital Neuropsychiatry Centre, a tertiary specialist service in Melbourne, Australia, and categorized as either early-onset Alzheimer's disease ( = 18), non-Alzheimer's disease neurodegeneration ( = 23) or primary psychiatric disorders ( = 24).

View Article and Find Full Text PDF

In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.

View Article and Find Full Text PDF

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

Role of FOXO3a in LPS-induced inflammatory conditions in human dental pulp cells.

J Oral Biosci

January 2025

Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea. Electronic address:

Objectives: We investigated the involvement of FOXO3a in lipopolysaccharide (LPS)-induced inflammation in primary human dental pulp cells (HDPCs).

Methods: HDPCs that were isolated from donors undergoing tooth extraction for orthodontic purposes were cultured with or without 1 μg/mL LPS at various intervals. The FOXO3a localization in the HDPCs was verified using immunofluorescence.

View Article and Find Full Text PDF

Mechanisms and applications of bacterial luciferase and its auxiliary enzymes.

Arch Biochem Biophys

January 2025

Department of Biochemistry and Center of Excellent in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand. Electronic address:

Bacterial luciferase (LuxAB) catalyzes the conversion of reduced flavin mononucleotide (FMNH⁻), oxygen, and a long-chain aldehyde to oxidized FMN, the corresponding acid and water with concomitant light emission. This bioluminescence reaction requires the reaction of a flavin reductase such as LuxG (in vivo partner of LuxAB) to supply FMNH⁻ for the LuxAB reaction. LuxAB is a well-known self-sufficient luciferase system because both aldehyde and FMNH⁻ substrates can be produced by the associated enzymes encoded by the genes in the lux operon, allowing the system to be auto-luminous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!