A novel and convenient immunosensor, based on the electrostatic adsorption characteristics between the positively charged MnO(2) nanoparticles (nano-MnO(2)) and chitosan (CS) composite membrane (nano-MnO(2) + CS) and the negatively charged prussian blue (PB), was prepared for the detection of carcinoembryonic antigen (CEA). Firstly, PB was electro-deposited on the surface of the gold electrode in the constant potential, and then nano-MnO(2) + CS was adsorbed onto PB-modified electrode surface. Subsequently, Gold nanoparticles (nano-Au) were electro-deposited on the nano-MnO(2) + CS-modified electrode to immobilize antibody CEA (anti-CEA). Finally, bovine serum albumin (BSA) was employed to block sites against nonspecific binding. In our study, cyclic voltammetry (CV) and scanning electron microscopy (SEM) were used to characterize the fabricated process of the immunosensor. The immunosensor put up a rapid response time, high sensitivity and stability. Under the optimized conditions, cyclic voltammograms(CVs) determination of CEA displayed a broader linear response to CEA in two ranges, from 0.25 to 8.0 ng/mL, and from 8.0 to 100 ng/mL, with a relative low-detection limit of 0.083 ng/mL at three times the background and noise. The originality of the preparation of the immunosensor lies in not only using the synergistic effect of two kinds of nanomaterials (nano-MnO(2) and nano-Au) to immobilize anti-CEA, but also using nano-MnO(2) + CS to furnish a media transferring electron path. What is more, the researched methodology was efficient and potentially attractive for clinical immunoassays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-008-0260-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!