The neurotransmitter serotonin (5-HT) plays an important role in both the peripheral and central nervous systems. The biosynthesis of serotonin is regulated by two rate-limiting enzymes, tryptophan hydroxylase-1 and -2 (TPH1 and TPH2). We used a gene-targeting approach to generate mice with selective and complete elimination of the two known TPH isoforms. This resulted in dramatically reduced central 5-HT levels in Tph2 knockout (TPH2KO) and Tph1/Tph2 double knockout (DKO) mice; and substantially reduced peripheral 5-HT levels in DKO, but not TPH2KO mice. Therefore, differential expression of the two isoforms of TPH was reflected in corresponding depletion of 5-HT content in the brain and periphery. Surprisingly, despite the prominent and evolutionarily ancient role that 5-HT plays in both vertebrate and invertebrate physiology, none of these mutations resulted in an overt phenotype. TPH2KO and DKO mice were viable and normal in appearance. Behavioral alterations in assays with predictive validity for antidepressants were among the very few phenotypes uncovered. These behavioral changes were subtle in the TPH2KO mice; they were enhanced in the DKO mice. Herein, we confirm findings from prior descriptions of TPH1 knockout mice and present the first reported phenotypic evaluations of Tph2 and Tph1/Tph2 knockout mice. The behavioral effects observed in the TPH2 KO and DKO mice strongly confirm the role of 5-HT and its synthetic enzymes in the etiology and treatment of affective disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2565062PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003301PLOS

Publication Analysis

Top Keywords

dko mice
16
mice
9
5-ht plays
8
5-ht levels
8
tph2ko mice
8
role 5-ht
8
mice confirm
8
knockout mice
8
5-ht
6
dko
5

Similar Publications

Article Synopsis
  • Proteoglycans like biglycan (Bgn) and decorin (Dcn) are crucial for bone health, primarily by attracting water through their unique structures, but their specific functions are not fully understood.
  • Research using knockout mouse models revealed that Bgn deficiency leads to significant bone loss and reduced resilience, while Dcn appears to have a less pronounced impact, although it compensates when Bgn is absent.
  • Both Bgn and Dcn are essential for important signaling pathways in bone maintenance, with Bgn playing a dominant role in preserving bone structure and hydration levels.
View Article and Find Full Text PDF

Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.

View Article and Find Full Text PDF

Group 1 innate lymphoid cells protect liver transplants from ischemia-reperfusion injury via an interferon-γ-mediated pathway.

Am J Transplant

December 2024

The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Department of Surgery, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

As important immune regulatory cells, whether innate lymphoid cells (ILCs) are involved in liver transplantation (LT) remains unclear. In a murine orthotopic LT model, we dissected roles of ILCs in liver ischemia-reperfusion injury (IRI). Wild type (WT) grafts suffered significantly higher IRI in Rag2-γc double knockout (DKO) than Rag2 KO recipients, in association with downregulation of group 1 ILCs genes, including IFN-γ.

View Article and Find Full Text PDF

Background: Wild-type (WT) mice fed a conventional high-fat/high-sucrose diet (HFHSD) rarely develop metabolic dysfunction-associated steatohepatitis (MASH) with HCC. Because mouse bile acid (BA) is highly hydrophilic, we hypothesized that making it hydrophobic would lead to MASH with HCC.

Methods: Eleven-week-old WT and Cyp2a12/Cyp2c70 double knockout (DKO) mice were divided into two groups, including one which was fed a normal chow diet, and one which was fed an HFHSD.

View Article and Find Full Text PDF

Genetic synchronization of the brain and liver molecular clocks defend against chrono-metabolic disease.

Proc Natl Acad Sci U S A

December 2024

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.

Article Synopsis
  • * Mice lacking specific circadian receptors (REV-ERBα/β) show increased obesity risk and liver fat when their clocks are disrupted, but pairing their peripheral liver clocks with central ones can help reverse these issues.
  • * The research suggests that keeping the internal clocks of different body parts synchronized, rather than just aligning them with external light cues, might be key to treating metabolic problems linked to circadian cycle disruptions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!