The toll-like receptors (TLRs) are a class of transmembrane molecules that have important functions in both innate and acquired immunity. As part of the body's normal immune defense against microbial pathogens, stimulation of these receptors will trigger the inflammatory response cascade and the release of cytokines. Activation of these receptors also plays a role in a variety of systemic inflammatory diseases such as asthma, sepsis, atherosclerosis, acute coronary artery disease, and left ventricular remodeling. Pharmacologic approaches to modify the actions of TLRs are now under consideration as potential treatments for inflammatory systemic diseases that include atherosclerosis. At the same time, it is essential to characterize the benefits and risks of modifying such an important part of the body's innate immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CRD.0b013e3181709fd8DOI Listing

Publication Analysis

Top Keywords

toll-like receptors
8
atherosclerosis acute
8
acute coronary
8
receptors therapeutic
4
therapeutic targets
4
targets treatment
4
treatment atherosclerosis
4
coronary syndromes
4
syndromes myocardial
4
myocardial failure
4

Similar Publications

Purpose: The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis.

Methods: C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control.

View Article and Find Full Text PDF

Understanding the neurobiological mechanisms of LPS‑induced memory impairment.

Acta Neurobiol Exp (Wars)

January 2025

Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.

In recent years, growing evidence suggests that lipopolysaccharide (LPS), a bacterial endotoxin found in the outer membrane of gram‑negative bacteria, can influence cognitive functions, particularly memory formation and retrieval. However, the underlying mechanisms through which LPS exerts its effects on memory remain incompletely understood. This review used various electronic databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published between 2000 and 2024.

View Article and Find Full Text PDF

Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.

View Article and Find Full Text PDF

Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis.

View Article and Find Full Text PDF

Synthesis, characterization and biological profile of some new dihydropyrimidinone derivaties.

Heliyon

January 2025

Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000.

Objective: The rise of drug-resistant bacteria, viruses, and fungi has prompted the search for new drugs without cross-resistance to current treatments. As a result, the aim of this research was to synthesize various types of dihydropyrimidinones heterocyclic compounds and screened them for their antibiotic properties.

Methodology: Newly synthesized dihydropyrimidinone derivatives were characterized spectroscopically using proton NMR (HNMR), and FT-IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!