AII amacrine cells form a network of electrically coupled interneurons in the mammalian retina and tracer coupling studies suggest that the junctional conductance (G(j)) can be modulated. However, the dynamic range of G(j) and the functional consequences of varying G(j) over the dynamic range are unknown. Here we use whole cell recordings from pairs of coupled AII amacrine cells in rat retinal slices to provide direct evidence for physiological modulation of G(j), appearing as a time-dependent increase from about 500 pS to a maximum of about 3,000 pS after 30-90 min of recording. The increase occurred in recordings with low- but not high-resistance pipettes, suggesting that it was related to intracellular washout and perturbation of a modulatory system. Computer simulations of a network of electrically coupled cells verified that our recordings were able to detect and quantify changes in G(j) over a large range. Dynamic-clamp electrophysiology, with insertion of electrical synapses between AII amacrine cells, allowed us to finely and reversibly control G(j) within the same range observed for physiologically coupled cells and to examine the quantitative relationship between G(j) and steady-state coupling coefficient, synchronization of subthreshold membrane potential fluctuations, synchronization and transmission of action potentials, and low-pass filter characteristics. The range of G(j) values over which signal transmission was modulated depended strongly on the specific functional parameter examined, with the largest range observed for action potential transmission and synchronization, suggesting that the full range of G(j) values observed during spontaneous run-up of coupling could represent a physiologically relevant dynamic range.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.90957.2008DOI Listing

Publication Analysis

Top Keywords

aii amacrine
16
amacrine cells
16
dynamic range
16
range
9
electrical synapses
8
synapses aii
8
range functional
8
functional consequences
8
junctional conductance
8
network electrically
8

Similar Publications

During retinal visual processing, rod bipolar cells (RBC) transfer scotopic signals from rods to AII amacrine cells as second-order neurons. Elucidation of the RBC's excitation/inhibition is essential for understanding the visual signal transmission. Excitation mechanisms via mGluR6 and voltage-gated Ca2+ channels in the RBCs and GABAergic inhibitory synaptic inputs have been studied in previous studies.

View Article and Find Full Text PDF

Through decades of research, we have gained a comprehensive understanding of the protein complexes underlying function and regulation of chemical synapses in the nervous system. Despite the identification of key molecules such as ZO-1 or CaMKII, we currently lack a similar level of insight into the electrical synapse proteome. With the advancement of BioID as a tool for proteomics, it has become possible to identify complex interactomes of a given protein of interest by combining enzymatic biotinylation with subsequent streptavidin affinity capture.

View Article and Find Full Text PDF

Bipolar cells of the retina carry visual information from photoreceptors in the outer retina to retinal ganglion cells (RGCs) in the inner retina. Bipolar cells express L-type voltage-gated Ca channels at the synaptic terminal, but generally lack other types of channels capable of regenerative activity. As a result, the flow of information from outer to inner retina along bipolar cell processes is generally passive in nature, with no opportunity for signal boost or amplification along the way.

View Article and Find Full Text PDF

Gap junctions transmit electrical signals in neurons and serve metabolic coupling and chemical communication. Gap junctions are made of intercellular channels with large pores, allowing ions and small molecules to permeate. In the mammalian retina, intercellular coupling fulfills many vital functions in visual signal processing but is also implicated in promoting cell death after insults, such as excitotoxicity or hypoxia.

View Article and Find Full Text PDF

Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina.

iScience

June 2024

Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.

Type 1 cannabinoid receptors (CB1Rs) are expressed in major retinal neurons within the rod-pathway suggesting a role in regulating night visual processing, but the underlying mechanisms remain poorly understood. Using acute rat retinal slices, we show that CB1R activation reduces glutamate release from rod bipolar cell (RBC) axon terminals onto AII and A17 amacrine cells through a pathway that requires exchange proteins directly activated by cAMP (EPAC1/2) signaling. Consequently, CB1R activation abrogates reciprocal GABAergic feedback inhibition from A17 amacrine cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!