The flux of gaseous elemental mercury (Hg(0)) from the forest floor of the Adirondack Mountains in New York (USA) was measured numerous times throughout 2005 and 2006 using a polycarbonate dynamic flux chamber (DFC). The Hg flux ranged between -2.5 and 27.2 ng m(-2) h(-1) and was positively correlated with temperature and solar radiation. The measured Hg emission flux was highest in spring, and summer, and lowest in winter. During leaf-off periods, the Hg emission flux was highly dependent on solar radiation and less dependent on temperature. During leaf-on periods, the Hg emission flux was fairly constant because the forest canopy was shading the forest floor. Two empirical models were developed to estimate yearly Hg(0) emissions, one for the leaf-off period and one for the leaf-on period. Using the U.S. EPA's CASTNET meteorological data, the cumulative estimated emission flux was approx. 7.0 microg Hg(0) m(-2) year(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2008.08.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!