Ceramic-on-ceramic total hip arthroplasty: update.

J Arthroplasty

Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202-5111, USA.

Published: October 2008

This prospective, randomized, multicenter study of alumina ceramic-on-alumina ceramic bearing couples includes 452 patients (475 hips). Their average age was 53 years with approximately two thirds men and 82% with osteoarthritis. At an average 8-year follow-up, clinical results were excellent and cortical erosions significantly less than in the conventional polyethylene-on-metal bearing group. Nine hips have undergone revision of one or both components for any reason. Of the 380 ceramic liners, 2 (0.5%) have fractured requiring reoperation, and 3 (0.8%) ceramic patients reported a transient squeaking sound, one of which had a head and liner change due to groin pain secondary to psoas tendinitis at 5 years. With no revisions for aseptic loosening and minimal cortical erosions, alumina-ceramic bearing couples are performing in a manner superior to the polyethylene-on-metal bearing in this young, active patient population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2008.06.003DOI Listing

Publication Analysis

Top Keywords

bearing couples
8
cortical erosions
8
polyethylene-on-metal bearing
8
ceramic-on-ceramic total
4
total hip
4
hip arthroplasty
4
arthroplasty update
4
update prospective
4
prospective randomized
4
randomized multicenter
4

Similar Publications

Although numerous transition-metal catalyzed cross-coupling reactions of alkenyl electrophiles with a sulfur(VI) leaving group, mainly alkenyl sulfones, have been developed, most rely heavily on highly nucleophilic Grignard reagents, and the use of organoboron reagents remains challenging. We report herein facile preparation and the following Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of alkenyl sulfoximine, a monoaza analog of sulfone. The condensation of alkyl sulfoximine with aldehydes, developed in this study, makes alkenyl sulfoximines more readily available.

View Article and Find Full Text PDF

Unsymmetric triazine-based triglucoside detergents for membrane protein stability.

Chembiochem

January 2025

Hanyang University, Department of Bionano Engineering, 55 Hanyangdaehak-ro, 15588, Ansan, KOREA, REPUBLIC OF.

Membrane proteins play a crucial role in a variety of biological processes and are key targets for pharmaceutical development. Structural studies of membrane proteins provide molecular insights into the mechanisms of these processes and are essential for effective drug discovery. Historically, these studies have relied on solubilization of the target protein using detergents, but conventional detergents often fail to maintain the stability of challenging membrane proteins.

View Article and Find Full Text PDF

In this work, a multicomponent polymerization (MCP) approach involving bipyrroles, sulfonyl azides, and diynes was developed to afford a library of poly(bipyrrole-sulfonylimide)s (PPSIs) in high yields and molecular weights, which were further modified to form unique sulfur dioxide (SO2) generators. Bipyrroles served as carbon-based nucleophiles to undergo Cu-catalyzed C-C coupling during the MCP. Upon post-MCP modification by transforming the bipyrrole unit to boron dipyrromethene (BODIPY) and the sulfonylimide moiety to sulfonamide, poly(BODIPY-sulfonamide)s (PBSAs) were obtained as potent anticancer therapeutic agents.

View Article and Find Full Text PDF

Since the rings of the angular contact ball bearings (ACBBs) are typical highly sensitive quenching thin-walled structure, the microstructure and properties variation of the rings during the heat treatment process are often difficult to be controlled precisely, and then the service life of the bearings is reduced. Therefore, in this study, the combination of the numerical simulation and experimental was carried out during the quenching and tempering process of ACBBs (7008C), the phase transformation of the inner and outer ring during the heat treatment process were explored, and the law of the microstructure evolution and the mechanical properties variation were revealed. Firstly, based on the multi-field coupling theory of temperature, microstructure and stress-strain field, the numerical simulation model of the heat treatment process of the bearing rings was established.

View Article and Find Full Text PDF

Photoinduced Pd-Catalyzed 1,4-Dicarbofunctionalization of 1,3-Butadienes via Aliphatic C-H Bond Elaboration.

Org Lett

January 2025

Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

A three-component coupling strategy for 1,4-dicarbofunctionalization of 1,3-butadiene with C-H bearing substrates has been developed using photoinduced Pd catalysis, with aryl bromide serving as the hydrogen atom transfer (HAT) reagent. This photocatalytic coupling process achieves functionalized oxindole motifs in good yield and regioselectivity under mild reaction conditions. The versatility and synthetic utility of this method are demonstrated through the addition of a variety of C-H-bearing partners and various oxindole substrates to both substituted and unsubstituted butadiene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!