The aim of this research was to study how high water temperatures impair the reproductive activity of pejerrey Odontesthes bonariensis, an inland-water atherinopsid fish species from the pampasic region of Argentina. Adult pejerrey of both sexes were kept under a control-temperature regime (19 degrees C) and two experimental temperatures (23 degrees and 27 degrees C) for 8 d. The effect of elevated temperature on the pituitary-gonad axis was analyzed in terms of the expression of gonadotropin (GtH) subunits: follicle-stimulating hormone beta, luteinizing hormone beta (LH-beta), glycoprotein hormone alpha, and GtH receptors FSH-R and LH-R by semiquantitative reverse transcriptase polymerase chain reaction, plasma levels of sexual steroids by radioimmunoassay, and reproductive status by gonadal histology. The results of this work clearly indicate that short periods of exposure to high water temperatures disrupt pejerrey reproduction. This effect was observed in spawning activity, at the histological level, and in the reduction of plasma estradiol in females and testosterone in males. The mRNA levels of GtH subunits and GtH receptors generally decreased in proportion to the increase in temperature for both sexes. However, the differences between groups were statistically significant only for LH-beta and for FSH-R expression in pejerrey females. Thus, the gonads of pejerrey appear to be the primary target of high water temperature. Analysis of the air temperature in this region over the past 40 yr indicated an increase of 1.74 degrees C in mean annual temperature. This increase, coupled with the mechanism of high-temperature sensitivity shown in this study, may be one of the reasons for the decline in pejerrey populations observed in this region over recent decades.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/588178 | DOI Listing |
Sci Data
December 2024
Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India.
High-frequency precipitation (solid/liquid) isotope datasets are useful for identification of moisture sources and various dynamical and thermodynamical processes controlling precipitation formation. Here, we report three-year (2019-2021) daily rain isotope (both oxygen, δO hereafter, and hydrogen, δH, hereafter) datasets from three unique locations in India during the Indian Summer Monsoon (ISM). The locations are- (1) Port Blair- an island situated in the Bay of Bengal (BoB); (2) Mahabaleshwar, located at the crest of the Western Ghats Mountain; and (3) Tezpur, in northeast India, situated close to a dense forest.
View Article and Find Full Text PDFJ Nutr
December 2024
Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
Background: Plant-based foods have reduced protein digestibility and frequently display unbalanced amino acid profiles. Plant-based foods are therefore considered inferior to animal-based foods in their anabolic potential. No study has assessed the anabolic potential of a vegan diet that provides a large variety of plant-based protein sources in older adults.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:
Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan. Electronic address:
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!