Catalytic desulfurization of dibenzothiophene with palladium nanoparticles.

Inorg Chem

Facultad de Química, UniVersidad Nacional Autónoma de México, México, D.F. 04510.

Published: December 2008

The thermal reduction of [(PEt3)2PdMe2] (1 mol%), which was produced in situ from [(PEt3)2PdCl2] (1) and 2 equiv of MeMgBr in toluene solvent, yielded palladium nanoparticles that in conjunction with MeMgBr effected the desulfurization of dibenzothiophene (DBT). The reaction resulted in the generation of the sulfur-free compound 2,2'-dimethylbiphenyl, in high yields (60%). The use of several stabilizing agents such as sodium 2-ethylhexanoate and hexadecylamine was also addressed herein, their use resulting in a significant improvement of the desulfurization reaction that reached up to 90% conversion of DBT into the mentioned biphenyl. The palladium nanoparticles formed during the reaction were characterized by transmission electron microscopy and exhibited a smaller size and a lesser extent of agglomeration whenever stabilizers were used.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic801550jDOI Listing

Publication Analysis

Top Keywords

palladium nanoparticles
12
desulfurization dibenzothiophene
8
catalytic desulfurization
4
dibenzothiophene palladium
4
nanoparticles thermal
4
thermal reduction
4
reduction [pet32pdme2]
4
[pet32pdme2] mol%
4
mol% produced
4
produced situ
4

Similar Publications

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles.

Molecules

December 2024

Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.

Bimetallic PdCu nanoparticles with different Pd:Cu ratios and morphologies can be synthesized and immobilized on a variety of support materials. Accordingly, PdCu nanoparticles can be efficiently applied as heterogeneous catalysts in a large number of organic transformations including C-C coupling and cross-coupling reactions. As related to their favorable electronic and structural interactions, the catalytic performances of PdCu bimetallic nanoparticles may be superior to monometallic species.

View Article and Find Full Text PDF

Apart from HER2-positive, triple-negative breast cancer (TNBC) is the second most highly invasive type of breast cancer. Although TNBC does not overexpress HER2 receptors, it has been observed that EGFR protein expression is present in this specific type of tumor, making it an attractive target for immune and radiopharmaceutical treatments. In our current study, we used Pd (T = 13.

View Article and Find Full Text PDF

In recent years, the use of bacterial flagella as biomimetic templates has gained increasing attention in nanomaterial synthesis due to their unique structural and functional properties. In this study, we optimized the flagella extraction method and achieved a high concentration of flagella solution. Flagella were isolated from .

View Article and Find Full Text PDF

Diatomic Palladium Catalyst for Enhanced Photocatalytic Water-Donating Transfer Hydrogenation.

J Am Chem Soc

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People's Republic of China.

Article Synopsis
  • Diatomic catalysts (DACs) leverage the interactions between adjacent metal atoms to enhance the properties of single-atom catalysts (SACs), but their preparation and characterization pose challenges.
  • A new carbon nitride-supported Pd-DAC was developed, achieving a remarkable 92% yield in photocatalytic water-donating transfer hydrogenation of 4-vinylphenol, outperforming both Pd single atoms (47%) and nanoparticles (1%).
  • This study combines advanced imaging and machine learning to confirm the presence of dimeric Pd species and uses DFT simulations to explain the superior performance of Pd-DAC through improved substrate activation, offering a more sustainable alternative to traditional hydrogenation methods.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!