Cloning and structural analysis of cDNA and the gene for mouse transcription factor UBF.

Nucleic Acids Res

Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan.

Published: September 1991

AI Article Synopsis

  • The mouse UBF gene, consisting of 21 exons and spanning over 13 kb, produces two mRNAs (mUBF1 and mUBF2) through alternative splicing, with mUBF1 being 765 amino acids long and mUBF2 728 amino acids long.
  • Both mRNAs contain a region homologous to high mobility group proteins and show an unusual conservation of nucleotide sequence in the 3'-terminal non-coding region when compared to the human UBF (hUBF).
  • In various mouse tissues, mUBF2 is more predominantly expressed than mUBF1, but in quiescent fibroblasts, mUBF1’s levels are half that of mUBF2,

Article Abstract

The gene and protein structure of the mouse UBF (mUBF), a transcription factor for mouse ribosomal RNA gene, have been determined by cDNA and genomic clones. The unique mUBF gene consists of 21 exons spanning over 13 kb. Two mRNAs coding for mUBF1 and mUBF2 having 765 a.a. and 728 a.a., respectively, are produced by an alternative splicing of exon 8. It specifies 37 amino acids constituting a part of the regions homologous to high mobility group proteins (HMG box 2). A human UBF (hUBF) cDNA obtained by polymerase chain reaction also indicates the presence of two kinds of mRNAs, the shorter form lacking the same region as mUBF2. Comparison of the cDNAs from hUBF and mUBF revealed an unusual conservation of nucleotide sequence in the 3'-terminal non-coding region. We examined the relative amounts of expression of mUBF1 and mUBF2. The eight tissues studied contained both molecular species, although mUBF2 was the predominant form of UBF. The mRNA of mUBF1 was expressed one half of the mUBF2 in quiescent mouse fibroblasts but reached the same amount in growing state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC328702PMC
http://dx.doi.org/10.1093/nar/19.17.4631DOI Listing

Publication Analysis

Top Keywords

transcription factor
8
mubf1 mubf2
8
mubf2
5
cloning structural
4
structural analysis
4
analysis cdna
4
gene
4
cdna gene
4
mouse
4
gene mouse
4

Similar Publications

Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

Cochlear inner hair cells (IHCs) and outer hair cells (OHCs) require different transcription factors for their cell fate stabilization and survival, suggesting separate mechanisms are involved. Here, we found that the transcription factor Casz1 was crucial for early IHC fate consolidation and for OHC survival during mouse development. Loss of Casz1 resulted in transdifferentiation of IHCs into OHCs, without affecting OHC production.

View Article and Find Full Text PDF

The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models.

View Article and Find Full Text PDF

Homeobox protein MSX-1 restricts hepatitis B virus by promoting ubiquitin-independent proteasomal degradation of HBx protein.

PLoS Pathog

January 2025

Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.

Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!