Trace metals are essential for the growth and several other properties of human lymphocytes. We studied the effects of media with variable concentrations of three metals (Fe2+, Cu2+, Zn2+), a metal chelator (deferoxamine, DFX) and a cell-growth inhibitor (hydroxyurea) on the growth, intracellular metal concentration and activity of the enzyme ribonucleotide reductase in murine leukemic lymphocytes (L1210). Intracellular concentrations of Fe and Cu fluctuated within narrow limits in normal media, but decreased to very low concentrations in metal-poor media. The intracellular Zn concentration did not vary appreciably. Growth in intact cells decreased by 50%-70% when normal media were replaced by metal-poor media, but returned to control values when media were supplemented with gradually increasing concentrations of Fe and Cu. Fe and Cu had synergistic effects, while Zn had no stimulatory action. Hydroxyurea and DFX both inhibited cell growth, but only DFX inhibition was reversed by addition of metals. The addition of the above metals and inhibitors to the cell extracts produced effects on ribonucleotide reductase activity similar to those observed on the growth of whole cell preparations (stimulation by Fe and Cu, inhibition by Zn, DFX and hydroxyurea). These findings show that (a) the intracellular metal concentration is maintained in a narrow range during cell growth; (b) ribonucleotide reductase activity varies with cell growth; (c) ribonucleotide reductase activity and cell growth increase with Fe and Cu and decrease with Zn and DFX. Our data suggest that (a) Fe, Cu and Zn may have some effect on the growth and ribonucleotide reductase activity of L1210 cells, that (b) Fe, Cu and Zn may operate in a related and interdependent way and that (c) DFX inhibits cell growth probably through inhibition of the reductase activity and chelation of the Fe of its Fe-containing subunit. We conclude that any study on one of these metals should always include the other two and that manipulation of intracellular metals should be investigated as a potential therapeutic modulator of growth in leukemic lymphocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01612765 | DOI Listing |
BMC Genomics
January 2025
State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.
View Article and Find Full Text PDFGenes (Basel)
December 2024
State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China.
Background: Hepatocellular carcinoma (HCC) is a type of malignant tumor with high morbidity and mortality. Untimely treatment and high recurrence are currently the major challenges for HCC. The identification of potential targets of HCC progression is crucial for the development of new therapeutic strategies.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico 00931, United States.
Targeting iron metabolism has emerged as a novel therapeutic strategy for the treatment of cancer. As such, iron chelator drugs are repurposed or specifically designed as anticancer agents. Two important chelators, deferasirox (Def) and triapine (Trp), attack the intracellular supply of iron (Fe) and inhibit Fe-dependent pathways responsible for cellular proliferation and metastasis.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France. Electronic address:
Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG->TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!