Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5694/j.1326-5377.1948.tb78263.x | DOI Listing |
Tissue Cell
February 2025
Centre for Stem Cell Research, (A unit of InStem, Bengaluru), Christian Medical College, Vellore, India; Department of Physiology, Christian Medical College, Vellore, India. Electronic address:
Purpose: In cartilage research, three-dimensional (3D) culture models are pivotal for assessing chondrogenic differentiation potential. Standard pellet cultures, despite their utility, pose challenges like uneven differentiation and handling difficulties. This study explores the use of Matrigel, an extracellular matrix-based hydrogel, to encapsulate fibronectin adhesion assay-derived chondroprogenitors (FAA-CPs) and evaluate their chondrogenic differentiation potential.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:
Bioreactor can provide a dynamic culture environment for the in vitro construction of osteochondral tissue engineering. They facilitate more efficient exchange of nutrients and provide mechanical and other beneficial stimulation. Previous findings demonstrated that rotary flask (RF) bioreactor, rotary cell culture system (RCCS), or electromagnetic field (EMF) mediated scaffold culture could create a favorable dynamic environment for osteochondral tissue engineering.
View Article and Find Full Text PDFBiol Res
October 2024
Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, Medical School/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain.
Background: C3H10T1/2 is a mesenchymal cell line capable of differentiating into osteoblasts, adipocytes and chondrocytes. The differentiation of these cells into osteoblasts is modulated by various transcription factors, such as RUNX2. Additionally, several interconnected signaling pathways, including the NOTCH pathway, play a crucial role in modulating their differentiation into mature bone cells.
View Article and Find Full Text PDFHum Exp Toxicol
October 2024
Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital.
Aberrant mechanical forces were considered as an important factor for osteoarthritis (OA) pathogenesis. Plant homeodomain finger-containing protein 8 (PHF8) participated in osteogenic differentiation and inflammatory progression. However, the role of PHF8 in aberrant force-related OA remains to be elucidated.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2024
Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences, Swansea University, Swansea, United Kingdom.
Introduction: The ability to bioprint facial cartilages could revolutionise reconstructive surgery, but identifying the optimum cell source remains one of the great challenges of tissue engineering. Tissue specific stem cells: chondroprogenitors, have been extracted previously using preferential adhesion to fibronectin based on the expression of CD49e: a perceived chondroprogenitor stem cell marker present on <1% of cartilage cells. This study sought to determine whether these fibronectin-adherent chondroprogenitor cells could be exploited for cartilage tissue engineering applications in isolation, or combined with differentiated chondrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!