To study the effects of inhaled oxygen pressures on N2 elimination, 72, 2-h washouts were performed in 6 subjects at oxygen pressures of 0.12, 0.2, 1.0, 2.0, and 2.5 atm abs using a closed circuit system that supplied an O2-argon mixture and collected the N2 off-gassed. Hypoxia induced a significant (9.4%, P less than 0.05) increase in nitrogen eliminated as compared to normoxia. Pure oxygen breathing induced a small, insignificant (3.5%) decrease in nitrogen yields, but further increases in oxygen pressure induced significant decreases in nitrogen yields (-8.9% and -16.9% for 2.0 and 2.5 atm abs, respectively). Heart rate, cardiac output, skin perfusion and leg blood flow decreased, whereas mean arterial pressure increased with increasing oxygen pressure. We conclude, therefore, that perfusion-dependent N2 elimination decreases secondary to vasoconstriction induced by increasing oxygen pressures. Changes in inhaled oxygen pressures during different phases of compression-decompression may induce alterations in the rate of inert gas uptake and elimination. Although not currently quantifiable, such alterations would imply added uncertainties in the computation of decompression schedules. Oxygen breathing during decompression should be performed at the lowest possible ambient pressure compatible with freedom from pathogenic bubble formation.
Download full-text PDF |
Source |
---|
Br J Hosp Med (Lond)
January 2025
Department of Sports Arts, Hebei Sport University, Shijiazhuang, Hebei, China.
A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China.
(1) Background: To develop a novel capillary refill time measurement system and evaluate its reliability and reproducibility. (2) Methods: Firstly, the utilization of electromagnetic pressure technology facilitates the automatic compression and instantaneous release of the finger. Secondly, the employment of pressure sensing technology and photoelectric volumetric pulse wave analysis technology enables the dynamic monitoring of blood flow in distal tissues.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.
This study investigates the resilience of the unicellular green microalga to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism's photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Medical Imaging, China Medical University Hospital, Taichung 40402, Taiwan.
Blood pressure measurement is important in monitoring hypertension. However, blood pressure does not provide much information about renal condition in treated hypertension. This study aimed to evaluate renal oxygenation in hypertensive patients using T2* mapping.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS UMR 5305, 69367 Lyon, France.
: According to the International Working Group on Diabetic Foot (IWGDF) risk classification, the estimated risk of developing a diabetic foot ulcer (DFU) is much higher in patients with a history of DFUs (Grade 3) compared to those with a peripheral neuropathy but without a history of DFUs (Grades 1 and 2). It has been suggested that microcirculation impairment is involved in DFU genesis and could be taken into account to refine the existing risk classification. The aim of this study was to evaluate microcirculation parameters in patients with diabetes according to their estimated DFU risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!