The structural organization of the cell nucleus was investigated by transmission electron microscopy in the radiosensitive Chinese hamster ovary (CHO) cell mutant, xrs-5 (D0 = 45 cGy), relative to parental K1 cells (D0 = 200 cGy). In 99% of all xrs-5 cells, the outer layer of the nuclear envelope was separated from the inner layer, while 96% of K1 cells had closely apposed layers. This separation of the inner and outer layers of the nuclear envelope in xrs-5 cells was not explained by an increased susceptibility of xrs-5 cells to osmotically induced changes because (1) xrs-5 cells retained the altered nuclear periphery even when several different fixation protocols were used and (2) xrs-5 cells were not more susceptible to cell lysis as measured by trypan blue dye exclusion or by the extracellular presence of lactate dehydrogenase. The difference in the morphological organization in the nuclear periphery of xrs-5 cells correlated with the radiation sensitivity of the cells; xrs-5 cells which spontaneously reverted to a radiation sensitivity similar to that of K1 cells also reverted to a nuclear morphology similar to that of K1 cells. The inner and outer layers of the nuclear envelope were retained in nuclear scaffolds isolated from K1 and xrs-5 cells, indicating that components of the nuclear periphery are part of the nuclear scaffold. These data show that xrs-5 cells have an altered nuclear periphery which correlates with the radiation sensitivity of the cells. The separation of the layers of the nuclear envelope may represent an altered template for repair of DNA damage at the nuclear scaffold and thus may play a role in the defective repair of X-ray-induced DNA double-strand breaks in xrs-5 cells.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!