Laser and fluorescence light distributions with applications for photodynamic therapy were measured in mouse tumors using a non-invasive electronic optical imaging system. The system consists of a liquid-nitrogen-cooled, charge-coupled-device (CCD) array camera under computer control with 576 x 384 detection elements having dimensions of 23 microns x 23 microns. The available dynamic range of the array is approx. 10(3), and the effective wavelength range is 400-1000 nm. An interstitially placed cylindrical diffusing optical fiber was used to provide tumor illumination. The light distribution pattern from the fiber was determined by immersing the cylindrical diffusing tip in a fluorescing solution and recording the emission image. Fluorescence imaging facilitates an accurate measurement of light intensity distribution while avoiding problems associated with the directional nature of other detection methods used with diffusing fibers. Radiation-induced fibrosarcoma tumors on C3H mice were grown to about 1 cm diameter for in vivo recording of light distribution from the tumor volume and for determination of effective light penetration distance at 18 wavelengths in the range 458-995 nm. Endogenous tumor fluorescence and Photofrin II fluorescence intensity were measured over the wavelength range 585-725 nm to investigate the possible application of CCD imaging technology for drug distribution measurements. Model experiments were begun to evaluate the relative importance of potential distortions of light distribution measurements using this approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1751-1097.1991.tb09893.x | DOI Listing |
Eur J Neurosci
January 2025
Faculty of Life Sciences, Leipzig University, Leipzig, Germany.
Communication sound processing in mouse AC is lateralized. Both left and right AC are highly specialised and differ in auditory stimulus representation, functional connectivity and field topography. Previous studies have highlighted intracortical functional circuits that explain hemispheric stimulus preference.
View Article and Find Full Text PDFACS Photonics
January 2025
Center for Nanophotonics, AMOLF, Science Park 104, XG Amsterdam 1098, the Netherlands.
We present a complete framework of stochastic thermodynamics for a single-mode linear optical cavity driven on resonance. We first show that the steady-state intracavity field follows the equilibrium Boltzmann distribution. The effective temperature is given by the noise variance, and the equilibration rate is the dissipation rate.
View Article and Find Full Text PDFACS Photonics
January 2025
Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom.
The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.
With the rapid expansion of wireless networks, the deployment and long-term maintenance of distributed microwave terminals have become increasingly challenging. To address these issues, we present a bio-inspired microwave system to constitute passive and maintenance-free wireless networks. Drawing inspiration from vertebrate skeletons and skins, we employ stimuli-responsive polymer with tunable stiffness to support and protect sensitive electromagnetic structures, and synthesize self-healable skin-like polymer for system encapsulation.
View Article and Find Full Text PDFChem Mater
January 2025
Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
Bismuth ferrites, specifically perovskite-type BiFeO and mullite-type BiFeO, hold significant technological promise as catalysts, photovoltaics, and room-temperature multiferroics. However, challenges arise due to their frequent cocrystallization, particularly in the nanoregime, hindering the production of phase-pure materials. This study unveils a controlled sol-gel crystallization approach, elucidating the phase formation complexities in the bismuth ferrite oxide system by coupling thermochemical analysis and total scattering with pair distribution function analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!