The outer part of the blood-retina barrier was most sensitive to light exposure (6000 lx, 6 h) during photodamage. It was manifested in hemodynamic disturbances, endothelial dysfunction, and focal death of the pigment epithelium. The photo effects increased during alloxan diabetes. The specific area of open vessels decreased, while the number of thrombotic vessels in the choroid increased. Administration of ascovertin improved hemodynamic parameters of the eye and decreased the specific area of focal damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-007-0447-6DOI Listing

Publication Analysis

Top Keywords

blood-retina barrier
8
alloxan diabetes
8
specific area
8
structural changes
4
changes components
4
components blood-retina
4
barrier rat
4
rat retina
4
retina photodamage
4
photodamage alloxan
4

Similar Publications

Oestrogen and progesterone fluctuate cyclically in women throughout their adult lives. Although these hormones cross the blood-retinal barrier and bind to intraocular receptors, their effects remain unclear. We present the first review to date on associations between posterior pole structures-specifically the macula, choroid, and optic disc-and both the menstrual cycle and post-menopausal period, utilising multimodal imaging techniques in healthy adult non-pregnant women.

View Article and Find Full Text PDF

Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.

PLoS Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America.

Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking.

View Article and Find Full Text PDF

A Bifunctional Peptide with Penetration Ability for Treating Retinal Angiogenesis via Eye Drops.

Mol Pharm

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.

Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.

View Article and Find Full Text PDF

Purpose: To describe a case series of presumed Sympathetic Ophthalmia (SO) triggered by diode laser cyclophotocoagulation (CPC) for the treatment of neovascular glaucoma.

Methods: Patients developing bilateral granulomatous uveitis after CPC between 2014 and 2024. Cases with prior ocular trauma or penetrating ocular surgery were excluded.

View Article and Find Full Text PDF

Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!