Probing peptide nanotube self-assembly at a liquid-liquid interface with coarse-grained molecular dynamics.

Nano Lett

Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Published: November 2008

Self-assembly at a liquid-liquid interface is a powerful experimental route to novel nanomaterials. We report herein a computational study of peptide nanotube formation at an oil-water interface. We probe interfacial self-assembly and nanotube formation of the cyclic octapeptide, cyclo [(-L-Trp-D-Leu-)4] as an illustrative example. Individual peptide rings are rapidly adsorbed at the liquid-liquid interface where they self-assemble. Monomeric and dimeric peptide rings lie with their molecular planes mostly parallel to the interface. Longer oligomeric nanotubes are increasingly tilted at the interface and grow by an Oswald ripening mechanism to eventually align their tube axis parallel to the interface. The present results on nanotube assembly suggest that computation will be a useful complement to experiment in understanding the nature of self-assembly of nanomaterials at liquid-liquid interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696305PMC
http://dx.doi.org/10.1021/nl801564mDOI Listing

Publication Analysis

Top Keywords

liquid-liquid interface
12
peptide nanotube
8
self-assembly liquid-liquid
8
nanotube formation
8
peptide rings
8
parallel interface
8
interface
7
probing peptide
4
nanotube
4
self-assembly
4

Similar Publications

In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.

View Article and Find Full Text PDF

Understanding the adsorption features of polymer microgels with different chemical compositions and structures is crucial in studying the mechanisms of respective emulsion stabilization. Specifically, the use of stimuli-responsive particles can introduce new properties and broaden the application range of such complex systems. Recently, we demonstrated that emulsions stabilized by microgels composed of interpenetrating networks (IPNs) of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) exhibit higher colloidal stability upon heating compared to PNIPAM homopolymer and other relevant PNIPAM-based copolymer counterparts.

View Article and Find Full Text PDF

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

Enzyme-instructed signal generation at liquid-liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil-water interface via a copper-mediated "click" reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process.

View Article and Find Full Text PDF

On-Chip Stimulated Raman Scattering Imaging and Quantification of Molecular Diffusion in Aqueous Microfluidics.

Anal Chem

January 2025

State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.

Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!