The membrane transporter multi-drug resistance 1 (MDR1, P-gp) regulates the bioavailability of endogenous and exogenous compounds and has been implicated in disorders such as Parkinson's disease, cancer, epilepsy, human immunodeficiency virus disease, and inflammatory bowel disease. To promote further understanding of the role of MDR1 in disease, we have characterized cellular MDR1 mRNA expression in post-mortem human and fresh-frozen Sprague-Dawley rat tissues by using radioactive oligonucleotide probe in situ hybridization. We report MDR1 mRNA in human and rat endothelial cells of small vessels in the brain and pia mater. Mdr1 mRNA is also expressed in the blood vessel walls of rat sensory dorsal root and sympathetic ganglia. In peripheral tissues, we have observed MDR1 mRNA in human and rat liver and renal tubules and in human adrenal cortex and the epithelial lining of rat intestine. In female and male reproductive tissues of rat, strong gene activity has been found in steroid-hormone-synthesizing cells. Quantification of MDR1 mRNA in human striatum has revealed reduced levels in Parkinson patients compared with control individuals. The high expression of MDR1 mRNA in blood vessels of the nervous system, in tissues involved in absorption and excretion, and in tissues forming barriers to the environment support the physiological role of MDR1 as a regulator of intracellular levels of endogenous and exogenous compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-008-0686-5DOI Listing

Publication Analysis

Top Keywords

mdr1 mrna
24
mrna human
16
mdr1
9
multi-drug resistance
8
reduced levels
8
levels parkinson
8
parkinson patients
8
endogenous exogenous
8
exogenous compounds
8
role mdr1
8

Similar Publications

Computational Analysis of MDR1 Variants Predicts Effect on Cancer Cells via their Effect on mRNA Folding.

PLoS Comput Biol

December 2024

Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel.

The P-glycoprotein efflux pump, encoded by the MDR1 gene, is an ATP-driven transporter capable of expelling a diverse array of compounds from cells. Overexpression of this protein is implicated in the multi-drug resistant phenotype observed in various cancers. Numerous studies have attempted to decipher the impact of genetic variants within MDR1 on P-glycoprotein expression, functional activity, and clinical outcomes in cancer patients.

View Article and Find Full Text PDF

This study aimed to compare the pharmacokinetics of ginkgo flavone aglycone(GA) in plasma after oral administration of GA in normal and atherosclerosis(AS) model rats and to explore the mechanism of pharmacokinetic differences. The AS rats were prepared by using high-fat diets. Rats in the normal and AS model groups were orally given 200 mg·kg~(-1) GA, blood samples were collected at different time points, plasma was separated, and the plasma concentrations of quercetin, kaempferol and isorhamnetin in the normal and AS model groups were determined by ultra-performance liquid chromatography-mass spectrometry(UPLC-MS/MS).

View Article and Find Full Text PDF

Breast cancer is a heterogeneous disease comprising multiple molecularly distinct subtypes with varied prevalence, prognostics, and treatment strategies. Among them, triple-negative breast cancer, though the least prevalent, is the most aggressive subtype, with limited therapeutic options. Recent emergence of competing endogenous RNA (ceRNA) networks has highlighted how long noncoding RNAs (lncRNAs), microRNAs (miRs), and mRNA orchestrate a complex interplay meticulously modulating mRNA functionality.

View Article and Find Full Text PDF

Intestinal ABC transporters: Influence on the metronomic cyclophosphamide-induced toxic effect in an obese mouse mammary cancer model.

Toxicol Appl Pharmacol

November 2024

Laboratorio de Fisiología Metabólica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina.; CONICET-Rosario. Rosario, Santa Fe, Argentina.. Electronic address:

Metronomic chemotherapy (MCT) is a cancer therapeutic approach characterized by low dose drug chronic administration and limited or null toxicity. Obesity-induced metabolic alterations worsen cancer prognosis and influence the intestinal biochemical barrier, altering the Multidrug resistance-associated protein 2 (Mrp2) and Multidrug resistance protein-1 (Mdr-1), efflux pumps that transport chemotherapeutic drugs. Obesity and cancer are frequent co-morbidities; thus, our aim was to evaluate the effectiveness and toxicity of MCT with cyclophosphamide (Cy) in obese mice with metabolic alterations bearing a mammary adenocarcinoma.

View Article and Find Full Text PDF

Induction of drug metabolizing enzyme and drug transporter expression by antifungal triazole pesticides in human HepaSH hepatocytes.

Chemosphere

October 2024

Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France. Electronic address:

Triazole pesticides are widely used fungicides, to which humans are rather highly exposed. They are known to activate drug-sensing receptors regulating expression of hepatic drug metabolizing enzymes and drug transporters, thus suggesting that the hepatic drug detoxification system is modified by these agrochemicals. To investigate this hypothesis, the effects of 9 triazole fungicides towards expression of drug metabolizing enzymes and transporters were characterized in cultured human HepaSH cells, that are human hepatocytes deriving from chimeric humanized liver TK-NOG mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!