Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository.

Planta

National Center for Soybean Biotechnology, Division of Plant Sciences, Life Sciences Center, Department of Molecular Microbiology, University of Missouri, Rollins Road, Columbia, MO 65211, USA.

Published: January 2009

Soybean is a major crop species providing valuable feedstock for food, feed and biofuel. In recent years, considerable progress has been made in developing genomic resources for soybean, including on-going efforts to sequence the genome. These efforts have identified a large number of soybean genes, most with unknown function. Therefore, a major research priority is determining the function of these genes, especially those involved in agronomic performance and seed traits. One means to study gene function is through mutagenesis and the study of the resulting phenotypes. Transposon-tagging has been used successfully in both model and crop plants to support studies of gene function. In this report, we describe efforts to generate a transposon-based mutant collection of soybean. The Ds transposon system was used to create activation-tagging, gene and enhancer trap elements. Currently, the repository houses approximately 900 soybean events, with flanking sequence data derived from 200 of these events. Analysis of the insertions revealed approximately 70% disrupted known genes, with the majority matching sequences derived from either Glycine max or Medicago truncatula sequences. Among the mutants generated, one resulted in male-sterility and was shown to disrupt the strictosidine synthase gene. This example clearly demonstrates that it is possible to disrupt soybean gene function by insertional mutagenesis and to derive useful mutants by this approach in spite of the tetraploid nature of the soybean genome.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-008-0827-9DOI Listing

Publication Analysis

Top Keywords

gene function
12
glycine max
8
soybean
7
function
5
gene
5
establishment soybean
4
soybean glycine
4
max merr
4
merr transposon-based
4
transposon-based mutagenesis
4

Similar Publications

Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis.

Orthop Surg

January 2025

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.

Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.

View Article and Find Full Text PDF

How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis).

View Article and Find Full Text PDF

The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( ) neocortex, complemented by datasets from humans ( ), mice ( ), zebra finches ( ), turtles ( ), and lizards ( s), enabling comprehensive cross-species comparison.

View Article and Find Full Text PDF

Multi-omics analysis and experimental verification reveal testicular fatty acid metabolism disorder in non-obstructive azoospermia.

Zool Res

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.

Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.

View Article and Find Full Text PDF

Lateral Atrial Expression Patterns Provide Insights into Local Transcription Disequilibrium Contributing to Disease Susceptibility.

Circ Genom Precis Med

January 2025

CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands.

Background: Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease development. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrial (LA) and right atrial (RA) may provide insight into diseases such as atrial fibrillation.

Methods: Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!