Efficient coding in heterogeneous neuronal populations.

Proc Natl Acad Sci U S A

Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, Houston, TX 77030, USA.

Published: October 2008

A ubiquitous feature of neuronal responses within a cortical area is their high degree of inhomogeneity. Even cells within the same functional column are known to have highly heterogeneous response properties when the same stimulus is presented. Whether the wide diversity of neuronal responses is an epiphenomenon or plays a role for cortical function is unknown. Here, we examined the relationship between the heterogeneity of neuronal responses and population coding. Contrary to our expectation, we found that the high variability of intrinsic response properties of individual cells changes the structure of neuronal correlations to improve the information encoded in the population activity. Thus, the heterogeneity of neuronal responses is in fact beneficial for sensory coding when stimuli are decoded from the population response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2571028PMC
http://dx.doi.org/10.1073/pnas.0807744105DOI Listing

Publication Analysis

Top Keywords

neuronal responses
16
response properties
8
heterogeneity neuronal
8
neuronal
6
efficient coding
4
coding heterogeneous
4
heterogeneous neuronal
4
neuronal populations
4
populations ubiquitous
4
ubiquitous feature
4

Similar Publications

In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.

View Article and Find Full Text PDF

Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing.

Nat Commun

January 2025

Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.

Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).

View Article and Find Full Text PDF

Viruses and neurodegeneration: a growing concern.

J Transl Med

January 2025

Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.

Neurodegenerative diseases (NDDs) cause a progressive loss of neurons. Since NDDs are multifactorial, the precise etiology varies on the basis of the type of disease and patient history. Cohort studies and case studies have demonstrated a potential link between viral infections and the onset or progression of NDDs.

View Article and Find Full Text PDF

The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.

View Article and Find Full Text PDF

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!