Azatryptophans endow proteins with intrinsic blue fluorescence.

Proc Natl Acad Sci U S A

Max Planck Institute of Biochemistry, Molecular Biotechnology, Am Klopferspitz 18, D-82152 Martinsried, Germany.

Published: October 2008

Our long-term goal is the in vivo expression of intrinsically colored proteins without the need for further posttranslational modification or chemical functionalization by externally added reagents. Biocompatible (Aza)Indoles (Inds)/(Aza)Tryptophans (Trp) as optical probes represent almost ideal isosteric substitutes for natural Trp in cellular proteins. To overcome the limits of the traditionally used (7-Aza)Ind/(7-Aza)Trp, we substituted the single Trp residue in human annexin A5 (anxA5) by (4-Aza)Trp and (5-Aza)Trp in Trp-auxotrophic Escherichia coli cells. Both cells and proteins with these fluorophores possess intrinsic blue fluorescence detectable on routine UV irradiations. We identified (4-Aza)Ind as a superior optical probe due to its pronounced Stokes shift of approximately 130 nm, its significantly higher quantum yield (QY) in aqueous buffers and its enhanced quenching resistance. Intracellular metabolic transformation of (4-Aza)Ind into (4-Aza)Trp coupled with high yield incorporation into proteins is the most straightforward method for the conversion of naturally colorless proteins and cells into their blue counterparts from amino acid precursors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2571030PMC
http://dx.doi.org/10.1073/pnas.0802804105DOI Listing

Publication Analysis

Top Keywords

intrinsic blue
8
blue fluorescence
8
proteins
6
azatryptophans endow
4
endow proteins
4
proteins intrinsic
4
fluorescence long-term
4
long-term goal
4
goal vivo
4
vivo expression
4

Similar Publications

Heterogeneous distribution of PSI and PSII in thick grana in shade chloroplasts is argued to hinder spillover of chlorophyll excitations from PSII to PSI. To examine this dogma, we measured fluorescence induction at 77K at 690 nm (PSII) and 760 nm (mostly PSI) in the leaf discs of Spinacia oleracea, Cucumis sativus and shade tolerant Alocasia odora, grown at high and low light, and quantified their spillover capacities. PSI fluorescence (FI) consists of the intrinsic PSI fluorescence (FIα) and fluorescence caused by excitations spilt over from PSII (FIβ).

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

The proton bond is a pivotal chemical motif in many areas of science and technology. Its quantum chemical description is remarkably challenged by nuclear and charge delocalization effects and the fluxional perturbation that it induces on molecular substrates. This work seeks insights into proton bonding at sub-kelvin temperatures.

View Article and Find Full Text PDF

Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes.

View Article and Find Full Text PDF

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!