Calcium-dependent activation of mitochondrial metabolism in mammalian cells.

Methods

Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.

Published: November 2008

Endogenous fluorophores provide a simple, but elegant means to investigate the relationship between agonist-evoked Ca2+ signals and the activation of mitochondrial metabolism. In this article, we discuss the methods and strategies to measure cellular pyridine nucleotide and flavoprotein fluorescence alone or in combination with Ca2+-sensitive indicators. These methods were developed using primary cultured hepatocytes and neurons, which contain relatively high levels of endogenous fluorophores and robust metabolic responses. Nevertheless, these methods are amendable to a wide variety of primary cell types and cell lines that maintain active mitochondrial metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640951PMC
http://dx.doi.org/10.1016/j.ymeth.2008.09.012DOI Listing

Publication Analysis

Top Keywords

mitochondrial metabolism
12
activation mitochondrial
8
endogenous fluorophores
8
calcium-dependent activation
4
metabolism mammalian
4
mammalian cells
4
cells endogenous
4
fluorophores provide
4
provide simple
4
simple elegant
4

Similar Publications

Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.

View Article and Find Full Text PDF

Identification and validation of a prognostic signature of drug resistance and mitochondrial energy metabolism-related differentially expressed genes for breast cancer.

J Transl Med

January 2025

Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.

View Article and Find Full Text PDF

Multiomics unravels the complexity of male obesity: a prospective observational study.

J Transl Med

January 2025

Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland.

Background: Obesity is associated with varying degrees of metabolic dysfunction. In this study, we aimed to discover markers of the severity of metabolic impairment in men with obesity via a multiomics approach.

Methods: Thirty-two morbidly men with obesity who were candidates for Roux-en-Y gastric bypass (RYGB) surgery were prospectively followed.

View Article and Find Full Text PDF

Prostate cancer (PCa) growth depends on de novo lipogenesis controlled by the mitochondrial pyruvate dehydrogenase complex (PDC). In this study, we identify lysine methyltransferase (KMT)9 as a regulator of PDC activity. KMT9 is localized in mitochondria of PCa cells, but not in mitochondria of other tumor cell types.

View Article and Find Full Text PDF

SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters.

Nat Commun

January 2025

College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.

Nicotinamide (NAM), a main precursor of NAD+, is essential for cellular fuel respiration, energy production, and other cellular processes. Transporters for other precursors of NAD+ such as nicotinic acid and nicotinamide mononucleotide (NMN) have been identified, but the cellular transporter of nicotinamide has not been elucidated. Here, we demonstrate that equilibrative nucleoside transporter 1 and 2 (ENT1 and 2, encoded by SLC29A1 and 2) drive cellular nicotinamide uptake and establish nicotinamide metabolism homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!