Background: The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-beta) superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia.

Results: Here we show that while TGF-beta2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-beta2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5.

Conclusion: The results demonstrate that TGF-beta2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-beta2 knock-out mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576228PMC
http://dx.doi.org/10.1186/1749-8104-3-25DOI Listing

Publication Analysis

Top Keywords

synaptic function
12
transforming growth
8
growth factor-beta
8
neuromuscular junction
8
pre-bötzinger complex
8
central synapses
8
function
5
loss transforming
4
factor-beta leads
4
leads impairment
4

Similar Publications

Novel De Novo Intronic Variant of SYNGAP1 Associated With the Neurodevelopmental Disorders.

Mol Genet Genomic Med

February 2025

Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.

Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.

View Article and Find Full Text PDF

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.

View Article and Find Full Text PDF

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.

View Article and Find Full Text PDF

Animals survive in dynamic environments changing at arbitrary timescales, but such data distribution shifts are a challenge to neural networks. To adapt to change, neural systems may change a large number of parameters, which is a slow process involving forgetting past information. In contrast, animals leverage distribution changes to segment their stream of experience into tasks and associate them with internal task abstracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!