Structural elucidation of propargylated products of 3-substituted-1,2,4-triazole-5-thiols by NMR techniques.

Magn Reson Chem

Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

Published: December 2008

Propargylation of 3-substituted-1,2,4-triazole-5-thiols, which predominantly exist as their thione tautomers, was carried out with the view to synthesize different heterocycles and study their biological activity. Three different products namely, a mono S-propargyl and two S,N-dipropargyl regioisomers, arising from N1/N2 substitution, were isolated and characterized. Unambiguous structural elucidation of the regioisomers of S,N-dipropargyl derivatives was achieved by means of (13)C-(1)H HMBC technique. The proportion of the regioisomers was found to vary with the substituent on the 1,2,4-triazole thiols. No product corresponding to N4 substitution was isolated from any of the reactions carried out.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrc.2307DOI Listing

Publication Analysis

Top Keywords

structural elucidation
8
substitution isolated
8
elucidation propargylated
4
propargylated products
4
products 3-substituted-124-triazole-5-thiols
4
3-substituted-124-triazole-5-thiols nmr
4
nmr techniques
4
techniques propargylation
4
propargylation 3-substituted-124-triazole-5-thiols
4
3-substituted-124-triazole-5-thiols exist
4

Similar Publications

In this study, we worked at the CCSD/aug-cc-pVTZ level to obtain the conformers of glycine in its neutral and zwitterionic forms in the gas and water phases. We then computed the NMR properties (spin-spin coupling constants and nuclear magnetic shieldings) at the SOPPA/aug-cc-pVTZ-J level. We attempt to elucidate the apparent discrepancy arising from two previous works by Valverde et al.

View Article and Find Full Text PDF

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Background And Aim: As a classical formula to invigorate blood circulation, Huoxue Tongluo Qiwei Decoction (HTQD) can effectively treat hypertensive erectile dysfunction (ED), but its exact mechanism of action is not yet clear. The goal of this research was to explore the potential mechanism of HTQD in improving hypertensive erectile dysfunction in rats through transcriptomics, network pharmacology, and associated animal experimentations.

Methods: The HTQD chemical constituents were screened using high-performance liquid chromatography- tandem mass spectrometry (HPLC-MS/MS).

View Article and Find Full Text PDF

Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).

View Article and Find Full Text PDF

Subtypes of Insomnia Disorder Identified by Cortical Morphometric Similarity Network.

Hum Brain Mapp

January 2025

Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.

Insomnia disorder (ID) is a highly heterogeneous psychiatric disease, and the use of neuroanatomical data to objectively define biological subtypes is essential. We aimed to examine the neuroanatomical subtypes of ID by morphometric similarity network (MSN) and the association between MSN changes and specific transcriptional expression patterns. We recruited 144 IDs and 124 healthy controls (HC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!