Whereas examples of insular speciation within the endemic-rich Macaronesian hotspot flora have been documented, the phylogeography of recently evolved plants in the region has received little attention. The Macaronesian red fescues constitute a narrow and recent radiation of four closely related diploid species distributed in the Canary Islands (F. agustinii), Madeira (F. jubata), and the Azores (F. francoi and F. petraea), with a single extant relative distributed in mainland southwest Europe (F. rivularis). Bayesian structure and priority consensus tree approaches and population spatial correlations between genetic, geographical, and dispersal distances were used to elucidate the phylogeographical patterns of these grasses. Independent versus related origins and dispersal versus isolation by distance (IBD) hypotheses were tested to explain the genetic differentiation of species and populations, respectively. Genetic structure was found to be geographically distributed among the archipelagos and the islands endemics. The high number of shared AFLP fragments in all four species suggests a recent single origin from a continental Pliocene ancestor. However, the strong allelic structure detected among the Canarian, Madeiran, and Azorean endemics and the significant standardized residual values obtained from structured Bayesian analysis for pairwise related origin hypotheses strongly supported the existence of three independent continental-oceanic colonization events. The Canarian F. agustinii, the Madeiran F. jubata, and the two sister F. francoi and F. petraea Azorean species likely evolved from different continental founders in their respective archipelagos. Despite the short span of time elapsed since colonization, the two sympatric Azorean species probably diverged in situ, following ecological adaptation, from a common ancestor that arrived from the near mainland. Simple dispersal hypotheses explained most of the genetic variation at the species level better than IBD models. The optimal dispersal model for F. agustinii was a bidirectional centripetal stepping-stone colonization pattern, an eastern-to-western volcanism-associated dispersion was favored for F. francoi, whereas for the recently derived F. petraea a counterintuitive direction of colonization (west-to-east) was suggested. The population-based phylogeographical trends deduced from our study could be used as predictive models for other Macaronesian plant endemics with similar distribution areas and dispersal abilities.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10635150802302450DOI Listing

Publication Analysis

Top Keywords

macaronesian red
8
red fescues
8
francoi petraea
8
azorean species
8
species
6
dispersal
5
multiple colonizations
4
colonizations situ
4
situ speciation
4
speciation volcanism-associated
4

Similar Publications

Needle-leaved junipers (Juniperus sect. Juniperus, Cupressaceae) are coniferous trees and shrubs with red or blue fleshy cones. They are distributed across Asia, Macaronesia and the Mediterranean Basin, with one species (J.

View Article and Find Full Text PDF

An updated checklist of Azorean arthropods (Arthropoda).

Biodivers Data J

December 2022

Gabelsbergerstraße 2, 30163, Hannover, Germany Gabelsbergerstraße 2, 30163 Hannover Germany.

Background: The Azores is a remote oceanic archipelago of nine islands which belongs to the Macaronesia biogeographical region hosting a unique biodiversity. The present Azorean landscape is strongly modified by the presence of man and only in small areas, where the soil or climate was too rough, have primitive conditions remained unchanged. Despite the fact that most of the Azorean native habitats are now lost, a large number of endemic species are still present and need urgent conservation.

View Article and Find Full Text PDF

Marine algal flora of São Miguel Island, Azores.

Biodivers Data J

April 2021

CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Faculdade de Ciências e Tecnologia, Departamento de Biologia, 9500-321 Ponta Delgada, Açores, Portugal CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Faculdade de Ciências e Tecnologia, Departamento de Biologia 9500-321 Ponta Delgada, Açores Portugal.

Background: The macroalgal flora of the Island of São Miguel (eastern group of the Azores Archipelago) has attracted the interest of many researchers in the past, the first publications going back to the nineteenth century. Initial studies were mainly taxonomic, resulting in the publication of a checklist of the Azorean benthic marine algae. Later, the establishment of the University of the Azores on the Island permitted the logistic conditions to develop both temporal studies and long-term research and this resulted in a significant increase on research directed at the benthic marine algae and littoral communities of the Island and consequent publications.

View Article and Find Full Text PDF

Frangula azorica V. Grubow is a Macaronesian flora medicinal plant, endemic from Azores islands and inscribed on the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species. This species, known as "sanguinho," belongs to the family Rhamnaceae, the same as Frangula alnus Mill.

View Article and Find Full Text PDF

The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is used to measure trends in extinction risk of species over time. The development of 2 red lists for Spanish vascular flora during the past decade allowed us to apply the IUCN RLI to vascular plants in an area belonging to a global biodiversity hotspot. We used the Spanish Red Lists from 2000 and 2010 to assess changes in level of threat at a national scale and at the subnational scales of Canary Islands, Balearic Islands, and peninsular Spain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!