Biology of secretory phospholipase A2.

Cardiovasc Drugs Ther

Department of Internal Medicine, Division of Endocrinology and Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0200, USA.

Published: February 2009

Introduction: The secretory phospholipase A(2) (sPLA(2)) family provides a seemingly endless array of potential biological functions that is only beginning to be appreciated. In humans, this family comprises 9 different members that vary in their tissue distribution, hydrolytic activity, and phospholipid substrate specificity. Through their lipase activity, these enzymes trigger various cell-signaling events to regulate cellular functions, directly kill bacteria, or modulate inflammatory responses. In addition, some sPLA(2)'s are high affinity ligands for cellular receptors.

Objective: This review merely scratches the surface of some of the actions of sPLA(2)s in innate immunity, inflammation, and atherosclerosis. The goal is to provide an overview of recent findings involving sPLA(2)s and to point to potential pathophysiologic mechanisms that may become targets for therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101564PMC
http://dx.doi.org/10.1007/s10557-008-6134-7DOI Listing

Publication Analysis

Top Keywords

secretory phospholipase
8
biology secretory
4
phospholipase introduction
4
introduction secretory
4
phospholipase spla2
4
spla2 family
4
family seemingly
4
seemingly endless
4
endless array
4
array potential
4

Similar Publications

Glycosylphosphatidylinositol (GPI) anchoring is one of the conserved posttranslational modifications in eukaryotes that attach proteins to the plasma membrane. In fungi, in addition to plasma membrane GPI-anchored proteins (GPI-APs), some GPI-APs are specifically released from the cell membrane, secreted into the cell wall, and covalently linked to cell wall glucans as GPI-anchored cell wall proteins (GPI-CWPs). However, it remains unclear how fungal cells specifically release GPI-CWPs from their membranes.

View Article and Find Full Text PDF

The intricate combination of organic and inorganic compounds found in snake venom includes proteins, peptides, lipids, carbohydrates, nucleotides, and metal ions. These components work together to immobilise and consume prey through processes such as paralysis and hypotension. Proteins, both enzymatic and non-enzymatic, form the primary components of the venom.

View Article and Find Full Text PDF

This study offers new insights into the dual role of secretory phospholipase A2 (sPLA2) in lymphedema, highlighting its impact on lymphatic endothelial cell (LEC) functionality. Through transcriptomic analyses and co-culture experiments, we observed that sPLA2 has both protective and detrimental effects on human LECs (HLECs), mediated by macrophage activation. Our findings reveal that while low levels of sPLA2 promote LEC health, excessive sPLA2 leads to dysfunction, emphasizing the significance of the sPLA2/PLA2R axis and arachidonic acid metabolism (AA) in lymphedema pathology.

View Article and Find Full Text PDF

Venom proteomics and Duvernoy's venom gland histology of Pseudoboa neuwiedii (Neuwied's false boa; Dipsadidae, Pseudoboini).

Toxicon

December 2024

Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil. Electronic address:

The venom of Colombian specimens of the rear-fanged snake Pseudoboa neuwiedii contains proteolytic and phospholipase A (PLA) activities, but is devoid of esterases. Mass spectrometric analysis of electrophoretic bands indicated that this venom contains C-type lectins (CTL), cysteine-rich secretory proteins (CRiSP), PLA, snake venom metalloproteinases (SVMP), and snake venom matrix metalloproteinases (svMMP). In this investigation, we extended our characterization of P.

View Article and Find Full Text PDF

The receptor binding mechanism of mouse sPLA2 group IIE.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, China. Electronic address:

Secreted phospholipase A2s (sPLA2s) participate in physiological function by their enzyme and receptor binding activity. Muscle-type phospholipase A2 receptor (M-type PLA2R) is the sPLA2 binding protein with the highest affinity so far, and also inhibits the enzyme activity of sPLA2. There is species specificity and pH dependence for the binding of M-type PLA2R to sPLA2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!