Physiological roles of CLC Cl(-)/H (+) exchangers in renal proximal tubules.

Pflugers Arch

Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.

Published: May 2009

AI Article Synopsis

Article Abstract

The CLC gene family encodes Cl(-) channels or Cl(-)/H(+) exchangers. While our understanding of their structure-function relationship has greatly benefited from the crystal structure of bacterial homologues, human inherited diseases and knock-out mice were crucial in deciphering their physiological roles. Several vesicular CLC Cl(-)/H(+) exchangers are expressed in the proximal tubule (PT). ClC-5 mutations cause Dent's disease which is associated with low molecular weight proteinuria and kidney stones. ClC-5 knock-out mice revealed impaired endocytosis as the primary defect in Dent's disease. It extends to receptor-mediated and fluid-phase endocytosis and entails changes in calciotropic hormones that result in kidney stones. No renal functions could be assigned so far to ClC-3 and ClC-4, which are also expressed in PTs. Loss of ClC-7 or its beta-subunit Ostm1 entails lysosomal storage in the PT, in addition to the neuronal lysosomal storage and osteopetrosis that are the hallmarks of ClC-7/Ostm1 loss in mice and men.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-008-0597-zDOI Listing

Publication Analysis

Top Keywords

physiological roles
8
cl-/h+ exchangers
8
knock-out mice
8
dent's disease
8
kidney stones
8
lysosomal storage
8
roles clc
4
clc cl-/h
4
cl-/h exchangers
4
exchangers renal
4

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Emerging Roles of TRIM56 in Antiviral Innate Immunity.

Viruses

January 2025

Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Fruit dropping represents a concern in many fruit species, including L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!