Si lattice parameter measurement by centimeter X-ray interferometry.

Opt Express

Politecnico di Torino, Torino, Italy.

Published: October 2008

A combined X-ray and optical interferometer capable of centimeter displacements has been made to measure the lattice parameter of Si crystals to within a 3 x 10(-9) relative uncertainty. This paper relates the results of test measurements carried out to assess the capabilities of the apparatus.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.016877DOI Listing

Publication Analysis

Top Keywords

lattice parameter
8
parameter measurement
4
measurement centimeter
4
centimeter x-ray
4
x-ray interferometry
4
interferometry combined
4
combined x-ray
4
x-ray optical
4
optical interferometer
4
interferometer capable
4

Similar Publications

A statistical approach for interplanar spacing metrology at a relative uncertainty below 10 using scanning transmission electron microscopy.

Micron

January 2025

Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:

Atomic-scale metrology in scanning transmission electron microscopy (STEM) allows to measure distances between individual atomic columns in crystals and is therefore an important aspect of their structural characterization. Furthermore, it allows to locally resolve strain in crystals and to calibrate precisely the pixel size in STEM. We present a method dedicated to the evaluation of interplanar spacing (d-spacing) based on an algorithm including curve fitting of processed high-angle annular dark-field STEM (HAADF STEM) signals.

View Article and Find Full Text PDF

Infinite Organic Solid-Solution Semiconductors with Continuous Evolution in Film Morphology, Crystalline Lattice and Electrical Properties.

Small

January 2025

Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China.

Constructing a solid solution is an effective strategy for regulating the properties of composite organic semiconductors. However, there presents significant challenges in fabrication and understanding of organic solid-solution semiconductors. In this study, infinite solid-solution semiconductors are successfully achieved by integrating rod-like organic molecules, thereby overcoming the limitations of current organic composite semiconductors.

View Article and Find Full Text PDF

A dozen predicted SiGe alloys with low enthalpies and strong absorption of sunlight for photovoltaic applications.

Phys Chem Chem Phys

January 2025

College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan, People's Republic of China.

Silicon germanium alloy materials have promising potential applications in the optoelectronic and photovoltaic industries due to their good electronic properties. However, due to the inherent brittleness of semiconductor materials, they are prone to rupturing under harsh working environments, such as high stress or high temperature. Here, we conducted a systematic search for silicon germanium alloy structures using a random sampling strategy, in combination with group theory and graph theory (RG), and 12 stable SiGe structures in 2-8 stacking orders were predicted.

View Article and Find Full Text PDF

Serendipitous high-resolution structure of Escherichia coli carbonic anhydrase 2.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

X-ray crystallography remains the dominant method of determining the three-dimensional structure of proteins. Nevertheless, this resource-intensive process may be hindered by the unintended crystallization of contaminant proteins from the expression source. Here, the serendipitous discovery of two novel crystal forms and one new, high-resolution structure of carbonic anhydrase 2 (CA2) from Escherichia coli that arose during a crystallization campaign for an unrelated target is reported.

View Article and Find Full Text PDF

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!