We demonstrate, for the first time to our knowledge, GaAs-based transverse-junction (TJ) superluminescent diodes (SLDs) that operate at a wavelength of 1.1 microm. Due to lateral current injection by use of TJ, specified as transverse carrier flow spread in each quantum well horizontally instead of vertical well-by-well injection, nonuniform carrier distribution can be minimized among different multiple quantum wells (MQWs), which is a problem in vertical-junction (VJ) SLDs whose electroluminescent (EL) spectrum is governed by the center wavelength of QWs near the p side. In contrast with a VJ SLD, the EL spectrum of our device is determined by QWs that have a larger differential gain than the positions of QWs neighbored with a p side layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.016860 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!