Oligodeoxynucleotides containing a CpG motif and double- or multistranded structure-forming sequences act as agonists of Toll-like receptor 9 (TLR9) and induce high levels of interferon alpha (IFN-alpha) in addition to other Th1-type cytokines. In the present study, we evaluated three highly effective IFN-alpha-inducing agonists of TLR9 to determine the type of duplex structures formed and the agonist's ability to induce immune responses, including IFN-alpha induction, in human cell-based assays and in vivo in mice and nonhuman primates. Thermal melting studies showed that two of the agonists evaluated had a single melting transition with similar hyperchromicity in both heating and cooling cycles, suggesting the formation of intermolecular duplexes. A third agonist showed a biphasic melting transition in the heating cycle and a monophasic melting transition with lower hyperchromicity during the cooling cycle, suggesting the formation of both intra- and intermolecular duplexes. All three agonists induced the production of Th1-type cytokines and chemokines, including high levels of IFN-alpha, in human peripheral blood mononuclear cell and plasmacytoid dendritic cell cultures. Subcutaneous administration of the two intermolecular duplex-forming agonists, but not the intramolecular duplex-forming agonist, induced cytokine secretion in mice. In nonhuman primates, the two agonists that formed intermolecular duplexes induced IFN-alpha and IP-10 secretion. On the contrary, the agonist that formed an intramolecular duplex induced only low levels of cytokines in nonhuman primates, suggesting that this type of structure formation is less immunostimulatory in vivo than the other structure. Taken together, the present results suggest that oligonucleotide-based agonists of TLR9 that form intermolecular duplexes induce potent immune responses in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592873PMC
http://dx.doi.org/10.1128/AAC.00701-08DOI Listing

Publication Analysis

Top Keywords

intermolecular duplexes
16
nonhuman primates
12
melting transition
12
toll-like receptor
8
agonists
8
interferon alpha
8
high levels
8
th1-type cytokines
8
agonists tlr9
8
immune responses
8

Similar Publications

Biomolecular condensation lays the foundation of forming biologically important membraneless organelles, but abnormal condensation processes are often associated with human diseases. Ribonucleic acid (RNA) plays a critical role in the formation of biomolecular condensates by mediating the phase transition through its interactions with proteins and other RNAs. However, the physicochemical principles governing RNA phase transitions, especially for short RNAs, remain inadequately understood.

View Article and Find Full Text PDF

Assessment of methodologies based on the formation of antiparallel triplex DNA structures and fluorescent silver nanoclusters for the detection of pyrimidine-rich sequences.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain. Electronic address:

In this work, strategies for the detection of pyrimidine-rich DNA target sequences based on the formation of duplex and antiparallel triplex structures are studied. The presence of the target is detected from the changes in fluorescence of silver nanoclusters stabilized by the corresponding complementary DNA probes. In all cases, the formation of intermolecular structures has been assessed by means of melting experiments and multivariate analysis.

View Article and Find Full Text PDF

Information can be encoded and stored in sequences of monomer units organized in linear synthetic polymers. Replication of sequence information is of fundamental importance in biology; however, it represents a challenge for synthetic polymer chemistry. A combination of covalent and noncovalent base pairs has been used to achieve high-fidelity templated synthesis of synthetic polymers that encode information as a sequence of different side-chain recognition units.

View Article and Find Full Text PDF

We herein rationally designed a target-recyclable AIE-biosensor based on a split G-quadruplex for label-free detection of miRNA in acute kidney injury. Initially, the PG was in an "OFF" state, and the two split segments (G4-a and G4-b) of G4 were tethered at the two terminals of P1 and far away from each other due to the rigid duplex structure formed by the partially complementary intermediate sequences of P2 and P1, bringing MG with quenched fluorescence. In the presence of target, the 5'-PO P2 was displaced from PG probe and competitively hybridized with target, which led to G4-a and G4-b tending to form an intact intermolecular G-quadruplex, providing sites for MG intercalation, thus generating an activated "ON" fluorescence signal due to the restriction of intermolecular motion.

View Article and Find Full Text PDF

An unprecedented metal-free synthesis of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine hybrids have been reported under mild conditions through a domino intermolecular SAr followed by an internal nucleophile-triggered intramolecular SAr pathway. Our strategy offers the flexibility for the introduction of a broad variety of functionalities at the N-1 position of fused diazepine moiety by using suitable diamine tails to design structurally diverse scaffolds. The DNA binding properties of representative quinoxaline diazepine hybrids were studied using UV-vis absorbance and EtBr displacement assay and were found to be governed by the functionalities at the N-1 position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!