A large exchange splitting of the conduction band in ultrathin films of the ferromagnetic semiconductor EuO was determined quantitatively, by using EuO as a tunnel barrier and fitting the current-voltage characteristics and temperature dependence to tunneling theory. This exchange splitting leads to different tunnel barrier heights for spin-up and spin-down electrons and is large enough to produce a near-fully spin-polarized current. Moreover, the magnetic properties of these ultrathin films (<6 nm) show a reduction in Curie temperature with decreasing thickness, in agreement with theoretical calculation [R. Schiller, Phys. Rev. Lett. 86, 3847 (2001)10.1103/Phys. Rev. Lett.86.3847].

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.101.147201DOI Listing

Publication Analysis

Top Keywords

exchange splitting
12
ultrathin films
8
tunnel barrier
8
determining exchange
4
splitting magnetic
4
magnetic semiconductor
4
semiconductor spin-filter
4
spin-filter tunneling
4
tunneling large
4
large exchange
4

Similar Publications

Proximity-Induced Superconductivity in Ferromagnetic FeGeTe and Josephson Tunneling through a van der Waals Heterojunction.

ACS Nano

January 2025

International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.

Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.

View Article and Find Full Text PDF

Design of RuO Electrocatalysts Containing Metallic Ru on the Surface to Accelerate the Alkaline Hydrogen Evolution Reaction.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.

View Article and Find Full Text PDF

Nanomagnetism Triggering Carriers Double-Resistance Conduction and Excellent Flexible Thermoelectrics.

Adv Mater

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

Nanomagnetism may enable electrical conductivity and Seebeck coefficient to be decoupled and can potentially lead to remarkable enhancements in thermoelectric (TE) performance, however, their physical mechanisms have not been explored. Herein, it is shown that the nanomagnetism from Fe and FeO nanoparticles embedded in BiSbTe/epoxy flexible films can lead to the carriers splitting into spin-up and spin-down conductive branches with different resistances and mobilities due to the exchange interaction between the spin of carriers and the nanomagnetism. The double-resistance conduction of carriers may well explain the decoupling of electrical conductivity and Seebeck coefficient and their simultaneous enhancements in the thermo-electro-magnetic flexible films.

View Article and Find Full Text PDF

Genomic sources from China are underrepresented in the population-specific reference database. We performed whole-genome sequencing or genome-wide genotyping on 1,207 individuals from four linguistically diverse groups (1,081 Sinitic, 56 Mongolic, 40 Turkic, and 30 Tibeto-Burman people) living in North China included in the 10K Chinese People Genomic Diversity Project (10K_CPGDP) to characterize the genetic architecture and adaptative history of ethnic groups in the Silk Road Region of China. We observed a population split between Northwest Chinese minorities (NWCMs) and Han Chinese since the Upper Paleolithic and later Neolithic genetic differentiation within NWCMs.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!