Three-dimensional dynamics of collisionless magnetic reconnection in large-scale pair plasmas.

Phys Rev Lett

Los Alamos National Laboratory, Los Alamos, NM 87544, USA.

Published: September 2008

Using the largest three-dimensional particle-in-cell simulations to date, collisionless magnetic reconnection in large-scale electron-positron plasmas without a guide field is shown to involve complex interaction of tearing and kink modes. The reconnection onset is patchy and occurs at multiple sites which self-organize to form a single, large diffusion region. The diffusion region tends to elongate in the outflow direction and become unstable to secondary kinking and formation of "plasmoid-rope" structures with finite extent in the current direction. The secondary kink folds the reconnection current layer, while plasmoid ropes at times follow the folding of the current layer. The interplay between these secondary instabilities plays a key role in controlling the time-dependent reconnection rate in large-scale systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.101.125001DOI Listing

Publication Analysis

Top Keywords

collisionless magnetic
8
magnetic reconnection
8
reconnection large-scale
8
diffusion region
8
current layer
8
reconnection
5
three-dimensional dynamics
4
dynamics collisionless
4
large-scale pair
4
pair plasmas
4

Similar Publications

Collisionless shocks are ubiquitous in space and astrophysical plasmas, and they are essential dynamical features of these systems. Lacking Coulomb collisions, these shocks are mediated by the anomalous dissipation provided by nonlinear plasma instabilities. By numerically resolving the structure of a steady-state, ion gyroviscous shock, we show that ion gyroviscosity, alone, can produce weak (M≲1.

View Article and Find Full Text PDF
Article Synopsis
  • Turbulence and magnetic reconnection are important nonlinear plasma phenomena that significantly affect energy transport in space and astrophysical plasmas.
  • Recent high-resolution, multi-spacecraft observations have improved our understanding of their complex interactions, revealing how turbulence generates current sheets that can undergo reconnection.
  • This paper reviews current knowledge on these interactions in collisionless plasmas, particularly in Earth's magnetosphere, highlighting findings from NASA's missions in key areas like the magnetosheath and magnetotail.
View Article and Find Full Text PDF

How magnetic reconnection is triggered or suppressed is an important outstanding problem. By considering pinching of a current sheet that has formed at non-equilibrium, we show that the background plasma beta is a major controlling factor in the onset and nature of magnetic reconnection. A high plasma beta inhibits a current sheet from pinching down to kinetic scales required for collisionless reconnection, while a low beta facilitates it.

View Article and Find Full Text PDF

A key ingredient for realizing a magnetically confined tritium-deuterium plasma fusion reactor is plasma heating by fusion-born high-energy helium ions, as a chained cycle of "nuclear burning." Efficient collisionless plasma heating by high-energy particles is anticipated when their energy is directly transferred to the plasma through waves. Those processes often involve nonlinear structure formations in phase-space, spanned by real-space and velocity-space coordinates, that significantly influence heating efficiency.

View Article and Find Full Text PDF

We introduce Astrophysical Hybrid-Kinetic simulations with the flash code ([Formula: see text]) - a new Hybrid particle-in-cell (PIC) code developed within the framework of the multiphysics code flash. The new code uses a second-order accurate Boris integrator and a predictor-predictor-corrector algorithm for advancing the Hybrid-kinetic equations, using the constraint transport method to ensure that magnetic fields are divergence-free. The code supports various interpolation schemes between the particles and grid cells, with post-interpolation smoothing to reduce finite particle noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!