We study anomalous elasticity in the tubule phases of nematic and smectic elastomer membranes, which are flat in one direction and crumpled in another. These phases share the same macroscopic symmetry properties including spontaneously broken in-plane isotropy and hence belong to the same universality class. Below an upper critical value D_{c}=3 of the membranes' intrinsic dimension D , thermal fluctuations renormalize the elasticity with respect to elastic displacements along the tubule axis so that elastic moduli for compression along the tubule axis and for bending the tubule axis become length-scale dependent. This anomalous elasticity belongs to the same universality class as that of d -dimensional conventional smectic liquid crystals with D taking on the role of d . For physical tubule phases, D=2 , this anomaly is of power-law type and thus might by easier to detect experimentally than the logarithmic anomaly in conventional smectics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.78.031704 | DOI Listing |
Phys Rev E
November 2024
Department of Physics, University of California Merced, Merced, California 95343, USA.
Platinum-coated Janus colloids exhibit self-propelled motion in aqueous solution via the catalytic decomposition of hydrogen peroxide. Here, we report their motion in a uniformly aligned nematic phase of lyotropic chromonic liquid crystal, disodium cromoglycate (DSCG). When active Janus colloids are placed in DSCG, we find that the anisotropy of the liquid crystal imposes a strong sense of direction to their motion; the Janus colloids tend to move parallel to the nematic director.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
Nat Commun
November 2024
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.
Phys Rev E
October 2024
Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany and Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea.
Understanding actual transport mechanisms of self-propelled particles (SPPs) in complex elastic gels-such as in the cell cytoplasm, in in vitro networks of chromatin or of F-actin fibers, or in mucus gels-has far-reaching consequences. Implications beyond biology/biophysics are in engineering and medicine, with a particular focus on microrheology and on targeted drug delivery. Here, we examine via extensive computer simulations the dynamics of SPPs in deformable gellike structures responsive to thermal fluctuations.
View Article and Find Full Text PDFChaos
November 2024
Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
Motivated by the well-known fractal packing of chromatin, we study the Rouse-type dynamics of elastic fractal networks with embedded, stochastically driven, active force monopoles and force dipoles that are temporally correlated. We compute, analytically-using a general theoretical framework-and via Langevin dynamics simulations, the mean square displacement (MSD) of a network bead. Following a short-time superdiffusive behavior, force monopoles yield anomalous subdiffusion with an exponent identical to that of the thermal system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!