Capillary forces have been measured by atomic force microscopy in the plate-sphere setup between gold, borosilicate glass, GeSbTe, titanium, and UV-irradiated amorphous titanium-dioxide surfaces. The force measurements were performed as a function contact time and surface roughness in the range 0.2-15 nm rms and relative humidity ranging between 2% and 40%. It is found that even for the lowest attainable relative humidity ( approximately 2%+/-1%) very large capillary forces are still present. The latter suggests the persistence of a nanometers-thick adsorbed water layer that acts as a capillary bridge between contacting surfaces. Moreover, we found a significantly different scaling behavior of the force with rms roughness for materials with different hydrophilicity as compared to gold-gold surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.78.031606 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!