Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We examine the dynamical evolution of the one-dimensional self-organized forest-fire model (FFM), when the system is far from its statistically steady state. In particular, we investigate situations in which conditions change on a time scale that is faster than, or of the order of the typical time needed for relaxation. An analytical approach is introduced based on a hierarchy of first-order nonlinear differential equations. This hierarchy can be closed at any level, yielding a sequence of successively more accurate descriptions of the dynamics. It is found that our approximate description can yield a faithful description of the FFM dynamics, even when a low order truncation is used. Employing both full simulations of the FFM and our approximate descriptions, we examine the time scales and cluster-size-dependent dynamics of relaxation to the statistical equilibrium. As an example of changing external conditions in a natural forest, the effects of a time-dependent lightning frequency are considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.78.021113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!