One often-cited weakness of biocatalysis is the lack of mirror-image enzymes for the formation of either enantiomer of a product in asymmetric synthesis. Enantiocomplementary enzymes exist as the solution to this problem in nature. These enzyme pairs, which catalyze the same reaction but favor opposite enantiomers, are not mirror-image molecules; however, they contain active sites that are functionally mirror images of one another. To create mirror-image active sites, nature can change the location of the binding site and/or the location of key catalytic groups. In this Minireview, X-ray crystal structures of enantiocomplementary enzymes are surveyed and classified into four groups according to how the mirror-image active sites are formed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200705159 | DOI Listing |
J Org Chem
January 2025
School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
Aldolases, especially 2-deoxyribose-5-phosphate aldolase (DERA) enzymes, have been widely employed to access key chiral precursors for various active pharmaceutical ingredients (APIs). This has been enabled by expanding their substrate scope toward non-natural acceptors and donors via protein engineering. In this study, we endeavored to broaden the acceptor substrate scope of DERA from sp.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).
View Article and Find Full Text PDFACS Catal
December 2024
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.
Biotechnol Bioeng
December 2024
College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
Enantiopure 1,2-diols are widely used in the production of pharmaceuticals, cosmetics, and functional materials as essential building blocks or bioactive compounds. Nevertheless, developing a mild, efficient and environmentally friendly biocatalytic route for manufacturing enantiopure 1,2-diols from simple substrate remains a challenge. Here, we designed and realized a step-wise biocatalytic cascade to access chiral 1,2-diols starting from aromatic aldehyde and formaldehyde enabled by a newly mined benzaldehyde lyase from Sphingobium sp.
View Article and Find Full Text PDFOrg Lett
September 2024
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
Less steric ketones exhibited low stereoselectivity toward M5 due to their difficulty in restricting the free rotation of the imine intermediate. An engineered enantio-complementary imine reductase from M5 was obtained with catalytic activity. We identified four key residues that play essential roles in controlling stereoselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!