Millisecond-scale differences in neural activity in auditory cortex can drive decisions.

Nat Neurosci

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

Published: November 2008

Neurons in the auditory cortex can lock to the fine timing of acoustic stimuli with millisecond precision, but it is not known whether this precise spike timing can be used to guide decisions. We used chronically implanted microelectrode pairs to stimulate neurons in the rat auditory cortex directly and found that rats can exploit differences in the timing of cortical activity that are as short as 3 ms to guide decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062077PMC
http://dx.doi.org/10.1038/nn.2211DOI Listing

Publication Analysis

Top Keywords

auditory cortex
12
guide decisions
8
millisecond-scale differences
4
differences neural
4
neural activity
4
activity auditory
4
cortex drive
4
drive decisions
4
decisions neurons
4
neurons auditory
4

Similar Publications

Introduction: Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies.

Objectives: To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms.

View Article and Find Full Text PDF

This study aimed to investigate the impact of early childhood chronic stress on the development of the brain extracellular matrix (ECM) and how alterations in the ECM following early-life adversity (ELA) affect auditory learning and cognitive flexibility. ELA was induced through a combination of maternal separation and neonatal isolation in male Sprague-Dawley rats, and the success of the ELA model was assessed behaviorally and biochemically. A cortex-dependent go/no-go task with two phases was used to determine the impact of ELA on auditory learning and cognitive flexibility.

View Article and Find Full Text PDF

When we listen to speech, our brain's neurophysiological responses "track" its acoustic features, but it is less well understood how these auditory responses are enhanced by linguistic content. Here, we recorded magnetoencephalography (MEG) responses while subjects of both sexes listened to four types of continuous-speech-like passages: speech-envelope modulated noise, English-like non-words, scrambled words, and a narrative passage. Temporal response function (TRF) analysis provides strong neural evidence for the emergent features of speech processing in cortex, from acoustics to higher-level linguistics, as incremental steps in neural speech processing.

View Article and Find Full Text PDF

Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.

View Article and Find Full Text PDF

The processing of stationary sounds relies on both local features and compact representations. As local information is compressed into summary statistics, abstract representations emerge. Whether the brain is endowed with distinct neural architectures predisposed to such computations is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!