Electric field control of charge carrier density has long been a key technology to tune the physical properties of condensed matter, exploring the modern semiconductor industry. One of the big challenges is to increase the maximum attainable carrier density so that we can induce superconductivity in field-effect-transistor geometry. However, such experiments have so far been limited to modulation of the critical temperature in originally conducting samples because of dielectric breakdown. Here we report electric-field-induced superconductivity in an insulator by using an electric-double-layer gating in an organic electrolyte. Sheet carrier density was enhanced from zero to 10(14) cm(-2) by applying a gate voltage of up to 3.5 V to a pristine SrTiO(3) single-crystal channel. A two-dimensional superconducting state emerged below a critical temperature of 0.4 K, comparable to the maximum value for chemically doped bulk crystals, indicating this method as promising for searching for unprecedented superconducting states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat2298 | DOI Listing |
ChemSusChem
January 2025
CSIR Central Glass & Ceramic Research Institute, EMDD, 196 Raja S C Mullick Road, 700032, Kolkata, INDIA.
The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.
View Article and Find Full Text PDFComp Immunol Microbiol Infect Dis
January 2025
Bedele Animal Health Diagnostic Center, Ethiopia.
Background: African animal trypanosomosis (AAT) is one of the most serious diseases with ongoing detrimental effects on animal health and food production.
Methods: A cross-sectional study was conducted in the Bedele and Dedesa districts of Buno Bedele Zone, Southwest Ethiopia, to determine the prevalence of trypanosomosis and its vector distributions in small ruminants. Blood samples collected from a total of 384 small ruminants were examined for trypanosomosis via hematological analysis.
Acc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFChemosphere
January 2025
DASCO Inc, Centennial, Colorado, USA.
This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!