Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/AIA.0b013e318187691c | DOI Listing |
Chem Biodivers
January 2025
Department of Horticultural Science, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
The approaches used to determine the medicinal properties of the plants are often destructive, labor-intensive, time-consuming, and expensive, making it impossible to analyze their quality analysis online. Performance of hyperspectral imaging (HSI) integrated with intelligent techniques to overcome these problems was investigated in this research. For this purpose, three classification methods-support vector machine, random forest (RF), and extreme gradient boosting-were studied for the classification of plants in three classes of medicinal, edible, and ornamental for the organs of leaf, stem, flower, and root.
View Article and Find Full Text PDFInsights Imaging
January 2025
Medical Research Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, P. R. China.
Objective: To develop an automatic segmentation model to delineate the adnexal masses and construct a machine learning model to differentiate between low malignant risk and intermediate-high malignant risk of adnexal masses based on ovarian-adnexal reporting and data system (O-RADS).
Methods: A total of 663 ultrasound images of adnexal mass were collected and divided into two sets according to experienced radiologists: a low malignant risk set (n = 446) and an intermediate-high malignant risk set (n = 217). Deep learning segmentation models were trained and selected to automatically segment adnexal masses.
Discov Oncol
January 2025
Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.
Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM.
J Gen Virol
January 2025
Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
The complexity and speed of evolution in viruses with RNA genomes makes predictive identification of variants with epidemic or pandemic potential challenging. In recent years, machine learning has become an increasingly capable technology for addressing this challenge, as advances in methods and computational power have dramatically improved the performance of models and led to their widespread adoption across industries and disciplines. Nascent applications of machine learning technology to virus research have now expanded, providing new tools for handling large-scale datasets and leading to a reshaping of existing workflows for phenotype prediction, phylogenetic analysis, drug discovery and more.
View Article and Find Full Text PDFBackground And Aims: The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain.
Methods: This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!