To dissect the rat receptor for advanced glycation end products (RAGE) subcellular distribution and trafficking in eukaryotic cells, an expression system coding for a fusion protein between the RAGE and an enhanced green fluorescent protein (EGFP) has been used. The RAGE-EGFP protein is expressed at the plasma membrane of CHO-k1 and Neuro-2a (N2a) cells and retains the capacity to bind Texas Red-labelled advanced glycation end products (AGEs). AGEs addition to the cell cultures induced a change in the subcellular distribution of the fluorescent RAGE-EGFP protein compatible with an internalization of the AGEs-RAGE complex. Furthermore, while N2a cells expressing the RAGE-EGFP showed an increase in ERK1/2 phosphorylation and NF-kappaB DNA binding in response to AGEs, pre-incubation with dansyl-cadaverine or phenylarsine oxide, inhibitors of receptors internalization, blocked the activation of ERKs and other intracellular responses mediated by AGEs. These results suggest that internalization plays a key role in the signal transduction mediated by RAGE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvn137 | DOI Listing |
Alpelisib is a phosphatidylinositol 3-kinase inhibitor approved by the US Food and Drug Administration for the treatment of hormone receptor-positive metastatic breast cancer with (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α) mutation. In recent years a number of adverse effects have been observed to be associated with this therapy, the most notable of which is hyperglycemia. A literature search was conducted to include case studies, case series, systematic reviews, and meta-analyses within the last 10 years that evaluated patients with mutated hormone receptor-positive, human epidermal growth factor receptor 2 negative metastatic breast cancer.
View Article and Find Full Text PDFJ Diabetes Sci Technol
January 2025
Profil, Neuss, Germany.
Background: Glucose is an essential molecule in energy metabolism. Dysregulated glucose metabolism, the defining feature of diabetes, requires active monitoring and treatment to prevent significant morbidity and mortality. Current technologies for intermittent and continuous glucose measurement are invasive.
View Article and Find Full Text PDFClin Neuroradiol
January 2025
Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
Background: Cardiovascular risk management is beneficial, but stringent glycemic control does not prevent the progression of distal sensorimotor polyneuropathy (DSPN). Persistent hyperglycemia-induced alterations and cardiovascular factors may contribute to diabetes-associated nerve damage. This study aimed to evaluate the correlation between skin auto-fluorescence (sAF), an indicator of dermal advanced glycation end-product (AGE) accumulations, cardiovascular risk, and changes in peripheral nerve integrity.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!